• Matéria: Matemática
  • Autor: lannymrks
  • Perguntado 9 anos atrás

Demonstre, pela definição de derivada, que se f(x) = senx, então f ′ (x) = cox.

Respostas

respondido por: Anônimo
1
Boa noite Lanny!

Solução!

f(x)=senx\\\\\
f'(x)=cosx


f'(x)= \displaystyle\lim_{t \to 0}  \dfrac{f(x0+t)-f(x0)}{t}\\\\\\\\
f'(x)= \displaystyle\lim_{t \to 0}  \dfrac{sen(x0+t)-sen(x0)}{t}\\\\\\\\ 
Lembrando~~Sen(a+b)\\\\\\\\
f'(x)= \displaystyle\lim_{t \to 0}  \dfrac{sen(x0).cost+sent.cos(x0)sen(x0)}{t}



f'(x)= \displaystyle\lim_{t \to 0}  \frac{sen(x0)[cost-1]+sent.cos(x0)}{t}\\\\\\\\
Lembrando~~que~~(a-b).(a+b)=(a^{2}-b^{2})\\\\\\\\\\\
f'(x)= \displaystyle\lim_{t \to 0}   \frac{sen(x0)[cost-1].[cost+1]+sent.cos(x0)}{t[cost+1} \\\\\\\\
f'(x)= \displaystyle\lim_{t \to 0}   \frac{sen(x0)[Cos^{2}-1 ]+sent.cos(x0)}{t[cost+1} \\\\\\\\
Relac\~ao ~~fundamental~~da~~trigonometria!\\\\\\
Sen^{2}x+Cos^{2}=1  \Rightarrow Cos^{2}-1=-Sen^{2}x



f'(x)= \displaystyle\lim_{t \to 0}   \frac{sen(x0)[-Sen^{2}]}{t[cost+1]}+ \frac{sent.cos(x0)}{t}  \\\\\\\\
f'(x)= \displaystyle\lim_{t \to 0} \frac{sen(x0)[-Sen^{2}x}{t[cost+1}]+ \frac{sent.cos(x0)}{t} \\\\\\\

f'(x)= \displaystyle\lim_{t \to 0} \frac{-sen(x0)Senx.Senx}{t[cost+1]}+ \frac{sent.cos(x0)}{t} \\\\\\\

Lembrando~~do~~limite~~fundamental~~trigonometrico!\\\\\\\\\

 f'(x)= \displaystyle\lim_{t \to 0} 0+ 1.cos(x0) \\\\\\\\\\\

f'(x)= \displaystyle\lim_{t \to 0} cos(x0) \\\\\\\



Esta ~~provado!\\\\\\\
\boxed{f'(x)=cosx}

Boa noite!
Bons estudos!

lannymrks: Obrigada!
Anônimo: Dê nada!
Perguntas similares