• Matéria: Matemática
  • Autor: LucasJairo
  • Perguntado 9 anos atrás

Integral indefinida

 \int\ {}(2e^2 -\frac{sen x}{cos x}+ \frac{2}{x^7})   \, dx


Lukyo: ∫ ( 2e^2 - sen x/cos x + 2/x^7 ) dx

Respostas

respondido por: Lukyo
0
\displaystyle\int\!\left(2e^2-\frac{\mathrm{sen\,}x}{\cos x}+\frac{2}{x^7} \right )dx\\\\\\ =\int 2e^2\,dx+\int\frac{1}{\cos x}\cdot (-\mathrm{sen\,}x)\,dx+\int 2x^{-7}\,dx\\\\\\ =2\int e^2\,dx+\int\frac{1}{\cos x}\cdot (-\mathrm{sen\,}x)\,dx+2\int x^{-7}\,dx\\\\\\ =2e^2\,x+\int\frac{1}{u}\,du+2\cdot \frac{x^{-7+1}}{-7+1}~~~~~~(\text{Substitui\c{c}\~ao }u=\cos x)\\\\\\ =2e^2\,x+\mathrm{\ell n}|u|+2\cdot \frac{x^{-6}}{-6}+C

=2e^2\,x+\mathrm{\ell n}\left|\cos x\right|-\dfrac{1}{3}\,x^{-6}+C\\\\\\\\ \therefore~~\boxed{\begin{array}{c} \displaystyle\int\!\left(2e^2-\frac{\mathrm{sen\,}x}{\cos x}+\frac{2}{x^7} \right )dx=2e^2\,x+\mathrm{\ell n}\left|\cos x\right|-\dfrac{1}{3x^6}+C \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6238821
Perguntas similares