• Matéria: Matemática
  • Autor: higabriiela
  • Perguntado 9 anos atrás

Simplifique  \frac{f(x+h) - f(x)}{h}

letra a - 1/x
letra b - 1/x²


Lukyo: Simplifique

(f(x+h)-f(x))/h

a) f(x) = 1/x

b) f(x) = 1/x^2
Lukyo: Razão incremental

Respostas

respondido por: Lukyo
1
\dfrac{f(x+h)-f(x)}{h}~~~~~~\text{com }h\ne 0

________

a) f(x)=\dfrac{1}{x}

\dfrac{f(x+h)-f(x)}{h}\\\\\\ =\dfrac{\frac{1}{x+h}-\frac{1}{x}}{h}\\\\\\ =\left(\dfrac{1}{x+h}-\dfrac{1}{x} \right )\cdot \dfrac{1}{h}\\\\\\ =\left(\dfrac{x}{(x+h)\cdot x}-\dfrac{x+h}{(x+h)\cdot x} \right )\cdot \dfrac{1}{h}\\\\\\ =\dfrac{x-(x+h)}{(x+h)\cdot x}\cdot \dfrac{1}{h}

=\dfrac{\diagup\!\!\!\! x-\diagup\!\!\!\! x-h}{(x+h)\cdot x\cdot h}\\\\\\ =\dfrac{(-1)\cdot \diagup\!\!\!\! h}{(x+h)\cdot x\cdot \diagup\!\!\!\! h}\\\\\\ =\boxed{\begin{array}{c}-\,\dfrac{1}{(x+h)\cdot x} \end{array}}

________

b) f(x)=\dfrac{1}{x^2}

\dfrac{f(x+h)-f(x)}{h}\\\\\\ =\dfrac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}\\\\\\ =\left(\dfrac{1}{(x+h)^2}-\dfrac{1}{x^2} \right )\cdot \dfrac{1}{h}\\\\\\ =\left(\dfrac{x^2}{(x+h)^2\cdot x^2}-\dfrac{(x+h)^2}{(x+h)^2\cdot x^2} \right )\cdot \dfrac{1}{h}\\\\\\ =\dfrac{x^2-(x+h)^2}{(x+h)^2\cdot x^2}\cdot \dfrac{1}{h}

=\dfrac{x^2-(x^2+2xh+h^2)}{(x+h)^2\cdot x^2\cdot h}\\\\\\ =\dfrac{\diagup\!\!\!\!\! x^2-\diagup\!\!\!\!\! x^2-2xh-h^2}{(x+h)^2\cdot x^2\cdot h}\\\\\\ =\dfrac{\diagup\!\!\!\!\! h\cdot (-2x-h)}{(x+h)^2\cdot x^2\cdot \diagup\!\!\!\!\! h}\\\\\\ =\dfrac{-2x-h}{(x+h)^2\cdot x^2}\\\\\\ =\boxed{\begin{array}{c}-\,\dfrac{2x+h}{(x+h)^2\cdot x^2} \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6264793
higabriiela: obrigaaada
Lukyo: Por nada! :-)
Perguntas similares