• Matéria: Matemática
  • Autor: LucasJairo
  • Perguntado 9 anos atrás

3) Calcule a integral

 \int\ {} \frac{dx}{(6-x^2)^\frac{3}{2} }  \,


Lukyo: ∫ dx/(6 - x^2)^(3/2)

Respostas

respondido por: Lukyo
0
I=\displaystyle\int\!\frac{dx}{(6-x^2)^{3/2}}~~~~~~\mathbf{(i)}


Faça a seguinte substituição (trigonométrica)

x=\sqrt{6}\,\mathrm{sen\,}t~~~~(-\pi/2<t<\pi/2)~~\Rightarrow~~\left\{\!\begin{array}{l} dx=\sqrt{6}\cos t\,dt\\\\ t=\mathrm{arcsen}\left(\dfrac{x}{\sqrt{6}} \right ) \end{array}\right.\\\\\\ 6-x^2=6-\big(\sqrt{6}\,\mathrm{sen\,}t\big)^2\\\\ 6-x^2=6-6\,\mathrm{sen^2\,}t\\\\ 6-x^2=6\,(1-\mathrm{sen^2\,}t)\\\\ 6-x^2=6\cos^2 t\\\\ (6-x^2)^{3/2}=(6\cos^2 t)^{3/2}\\\\ (6-x^2)^{3/2}=6\sqrt{6}\cos^3 t~~~~~~(\text{pois }-\pi/2<t<\pi/2)


Substituindo em \mathbf{(i)} a integral fica

=\displaystyle\int\!\frac{\sqrt{6}\cos t\,dt}{6\sqrt{6}\cos^3 t}\\\\\\ =\frac{1}{6}\int\!\frac{dt}{\cos^2 t}\\\\\\ =\frac{1}{6}\int\!\sec^2 t\,dt\\\\\\ =\frac{1}{6}\,\mathrm{tg\,}t+C~~~~~~\mathbf{(ii)}


Voltando à variável x

Observando o triângulo retângulo em anexo, vemos que

\mathrm{tg\,}t=\dfrac{x}{\sqrt{6-x^2}}


Substituindo em \mathbf{(ii)}, finalmente chegamos a

=\dfrac{1}{6}\cdot \dfrac{x}{\sqrt{6-x^2}}+C\\\\\\\\ \therefore~~\boxed{\begin{array}{c} \displaystyle\int\!\frac{dx}{(6-x^2)^{3/2}}=\frac{x}{6\sqrt{6-x^2}}+C \end{array}}


Bons estudos! :-)

Anexos:

Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6265243
respondido por: Anônimo
0

\sf \displaystyle \int \frac{dx}{\left(6-x^2\right)^{\frac{3}{2}}}\\\\\\=\int \frac{1}{6\cos ^2\left(u\right)}du\\\\\\=\frac{1}{6}\cdot \int \frac{1}{\cos ^2\left(u\right)}du\\\\\\=\frac{1}{6}\tan \left(u\right)\\\\\\\frac{1}{6}\tan \left(\arcsin \left(\frac{1}{6^{\frac{1}{2}}}x\right)\right)\\\\\\=\frac{x}{6\left(6-x^2\right)^{\frac{1}{2}}}\\\\\\\to \boxed{\sf =\frac{x}{6\left(6-x^2\right)^{\frac{1}{2}}}+C}

Perguntas similares