• Matéria: Matemática
  • Autor: matheuscupolill
  • Perguntado 9 anos atrás

lim      (√(x+9) - 3)/x
x⇒0               

Respostas

respondido por: Lukyo
1
L=\underset{x\to 0}{\mathrm{\ell im}}~\dfrac{\sqrt{x+9}-3}{x}\\\\\\
 =\underset{x\to 0}{\mathrm{\ell im}}~\dfrac{\sqrt{x+9}-3}{x}\cdot 
\dfrac{\sqrt{x+9}+3}{\sqrt{x+9}+3}\\\\\\ =\underset{x\to 0}{\mathrm{\ell
 im}}~\dfrac{\big(\sqrt{x+9}-3\big)\cdot \big(\sqrt{x+9}+3\big)}{x\cdot 
\big(\sqrt{x+9}+3\big)}\\\\\\ =\underset{x\to 0}{\mathrm{\ell 
im}}~\dfrac{\big(\sqrt{x+9}\big)^{\!2}-3^2}{x\cdot 
\big(\sqrt{x+9}+3\big)}\\\\\\ =\underset{x\to 0}{\mathrm{\ell 
im}}~\dfrac{x+9-9}{x\cdot \big(\sqrt{x+9}+3\big)}\\\\\\ =\underset{x\to 
0}{\mathrm{\ell im}}~\dfrac{\diagup\!\!\!\! x}{\diagup\!\!\!\! x\cdot 
\big(\sqrt{x+9}+3\big)}

=\underset{x\to 
0}{\mathrm{\ell im}}~\dfrac{1}{\sqrt{x+9}+3}\\\\\\ 
=\dfrac{1}{\sqrt{0+9}+3}\\\\\\ =\dfrac{1}{\sqrt{9}+3}\\\\\\ 
=\dfrac{1}{3+3}\\\\\\ =\dfrac{1}{6}\\\\\\\\ 
\therefore~~\boxed{\begin{array}{c} \underset{x\to 0}{\mathrm{\ell 
im}}~\dfrac{\sqrt{x+9}-3}{x}=\dfrac{1}{6} \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6268842
Perguntas similares