• Matéria: Matemática
  • Autor: SileneFHaber
  • Perguntado 9 anos atrás

Preciso entender, por favor \int\limits^a_b {} \, dx /  x^{2} * \sqrt{ x^{2} +25}


Niiya: x² e a raiz estão no denominador?
Anônimo: Aposto que sim. É derivada de trigonométrica. É só fazer a substituição...
SileneFHaber: sim

Respostas

respondido por: Niiya
0
Vamos avaliar a integral indefinida abaixo

\displaystyle\int\dfrac{1}{x^{2}\sqrt{x^{2}+25}}\,dx

Fazendo x=5\,tg(\theta),~-\frac{\pi}{2}~\textless~\theta~\textless~\frac{\pi}{2}, temos dx=5\,sec^{2}(\theta)\,d\theta

Então:

\displaystyle\int\frac{1}{x^{2}\sqrt{x^{2}+25}}\,dx=\int\dfrac{1}{[5\,tg(\theta)]^{2}\sqrt{[5\,tg(\theta)]^{2}+25}}5\,sec^{2}(\theta)\,d\theta\\\\\\=\int\frac{1}{5\,tg^{2}(\theta)\sqrt{25\,tg^{2}(\theta)+25}}sec^{2}(\theta)\,d\theta\\\\\\=\int\dfrac{1}{5\,tg^{2}(\theta)\sqrt{25\cdot[tg^{2}(\theta)+1]}}sec^{2}(\theta)\,d\theta\\\\\\=\int\dfrac{sec^{2}(\theta)}{5\,tg^{2}(\theta)\cdot5\sqrt{sec^{2}(\theta)}}\,d\theta\\\\\\=\dfrac{1}{25}\int\dfrac{sec^{2}(\theta)}{tg^{2}(\theta)\cdot sec(\theta)}\,d\theta

=\dfrac{1}{25}\displaystyle\int\dfrac{sec(\theta)}{tg^{2}(\theta)}\,d\theta=\dfrac{1}{25}\int\dfrac{1}{cos(\theta)}\cdot cotg^{2}(\theta)\,d\theta\\\\\\=\dfrac{1}{25}\int\dfrac{1}{cos(\theta)}\dfrac{cos^{2}(\theta)}{sen^{2}(\theta)}\,d\theta=\dfrac{1}{25}\int\dfrac{cos(\theta)}{sen^{2}(\theta)}\,d\theta

Se fizermos u=sen(\theta), temos du=cos(\theta)\,d\theta

\dfrac{1}{25}\displaystyle\int\dfrac{cos(\theta)}{sen^{2}(\theta)}\,d\theta=\dfrac{1}{25}\int\dfrac{1}{u^{2}}\,du=\dfrac{1}{25}\int u^{-2}\,du\\\\\\=\dfrac{1}{25}\dfrac{u^{-1}}{(-1)}=-\dfrac{1}{25}\dfrac{1}{u}=-\dfrac{1}{25\,sen(\theta)}+C

Agora, precisamos voltar para a variável x

x=5\,tg(\theta)~~\rightarrow~~tg(\theta)=\dfrac{x}{5}~~\rightarrow~~cotg(\theta)=\dfrac{5}{x}

Elevando os dois lados ao quadrado:

cotg^{2}(\theta)=\dfrac{25}{x^{2}}\\\\\\cotg^{2}(\theta)+1=\dfrac{25}{x^{2}}+1=\dfrac{25+x^{2}}{x^{2}}

Mas sabemos que cotg^{2}(\theta)+1=cossec^{2}(\theta)=\dfrac{1}{sen^{2}(\theta)}. Então:

\dfrac{1}{sen^{2}(\theta)}=\dfrac{25+x^{2}}{x^{2}}~~\Leftrightarrow~~sen^{2}(\theta)=\dfrac{x^{2}}{25+x^{2}}

Aplicando raiz quadrada nos dois lados da igualdade:

|sen(\theta)|=\sqrt{\dfrac{x^{2}}{25+x^{2}}}

Como \theta\in(-\frac{\pi}{2},\frac{\pi}{2}),~sen(\theta)~\textgreater~0, daí

|sen(\theta)|=sen(\theta)=\sqrt{\dfrac{x^{2}}{x^{2}+25}}

Portanto:

\displaystyle\int\dfrac{dx}{x^{2}\sqrt{x^{2}+25}}=-\dfrac{1}{25}\dfrac{1}{sen(\theta)}+C=-\dfrac{1}{25}\sqrt{\dfrac{25+x^{2}}{x^{2}}}+C
___________________________________

Finalmente:

\displaystyle\int\limits_{b}^{a}\dfrac{dx}{x^{2}\sqrt{x^{2}+25}}=\bigg[\int\dfrac{dx}{x^{2}\sqrt{x^{2}+25}}\bigg]_{b}^{a}=-\dfrac{1}{25}\bigg[\sqrt{\dfrac{25+x^{2}}{x^{2}}}\bigg]_{b}^{a}\\\\\\\therefore~~\boxed{\boxed{\int\limits_{b}^{a}\dfrac{dx}{x^{2}\sqrt{x^{2}+25}}=\dfrac{1}{25}\bigg[\sqrt{\dfrac{25+b^{2}}{b^{2}}}-\sqrt{\dfrac{25+a^{2}}{a^{2}}}\bigg]}}
Perguntas similares