• Matéria: Matemática
  • Autor: LucasJairo
  • Perguntado 9 anos atrás

 \int\ {}e^2^x~senx \, dx

Respostas

respondido por: Anônimo
1
Boa noite!

Solução!

Integral por partes cíclica!

\displaystyle \int udv=uv- \displaystyle \int vdu\\\\\\\\\ 
\displaystyle \int e^{2x} senxdx\\\\\\\\\
u=sen(x)dx~~~~~dv=e^{2x} \\\\\\\\\
du=cos(x)dx~~~~~v= \dfrac{e^{2x} }{2}\\\\\\
 
\displaystyle \int e^{2x} senxdx= \dfrac{sen(x).e^{2x}}{2}-\displaystyle \int\dfrac{e^{2x} }{2}cos(x)dx\\\\\\\
\displaystyle \int e^{2x} senxdx= \dfrac{sen(x).e^{2x}}{2}- \dfrac{1}{2} \displaystyle \int e^{2x} cos(x)dx\\\\\\\

Vamos fazer a mesma operação para a integral do lado direito!

\displaystyle \int e^{2x} cos(x)dx\\\\\\\
u=cos(x)~~~~dv=e^{2x} \\\\\\\
du=-sen(x)dx~~~~v= \dfrac{e^{2x} }{2}\\\\\\
\int udv=uv- \displaystyle \int vdu\\\\\\\\\\
 \dfrac{cos(x).e^{2x} }{2}-  \dfrac{1}{2} \displaystyle \int e^{2x}[-sen(x)dx]\\\\\\

 \dfrac{cos(x).e^{2x} }{2}+ \dfrac{1}{2} \displaystyle \int e^{2x}sen(x)dx\\\\\\


Vamos agora juntar as duas partes!

\displaystyle \int e^{2x} senxdx=\dfrac{sen(x).e^{2x}}{2}-\dfrac{cos(x).e^{2x} }{4}-\dfrac{1}{4} \displaystyle \int e^{2x}sen(x)dx\\\\\\\\\
\displaystyle \int e^{2x} senxdx+\dfrac{1}{4} \displaystyle \int e^{2x}sen(x)dx=\dfrac{sen(x).e^{2x}}{2}-\dfrac{cos(x).e^{2x} }{4}\\\\\\\\\\\


\dfrac{5}{4} \displaystyle \int e^{2x}sen(x)dx= \dfrac{sen(x).e^{2x}}{2}-\dfrac{cos(x).e^{2x} }{4}\\\\\\\\
\displaystyle \int e^{2x}sen(x)dx= \frac{\dfrac{sen(x).e^{2x}}{2}-\dfrac{cos(x).e^{2x} }{4}}{ \dfrac{5}{4} }\\\\\\\\\

\displaystyle \int e^{2x}sen(x)dx= \dfrac{sen(x).e^{2x}}{2}-\dfrac{cos(x).e^{2x} }{4}. \frac{4}{5} \\\\\\\\\

 \displaystyle \int e^{2x}sen(x)dx= \dfrac{4sen(x).e^{2x}}{10}-\dfrac{4cos(x).e^{2x} }{20}


 \displaystyle \int e^{2x}sen(x)dx= \dfrac{2sen(x).e^{2x}}{5}-\dfrac{1cos(x).e^{2x} }{5} \\\\\\\\\\
 \displaystyle \int e^{2x}sen(x)dx= \frac{1}{5} . \left (2sen(x).e^{2x}-cos(x).e^{2x}\right ) +c \\\\\\\\\\

\boxed{Resposta:~~\displaystyle \int e^{2x}sen(x)dx= \frac{1}{5} . \left (2sen(x).e^{2x}-cos(x).e^{2x}\right ) +c}

Boa noite!
Bons estudos!



Anônimo: Qualquer dúvida é só comentar.
respondido por: Anônimo
0

\sf \displaystyle \int \:e^{2x}sin \left(x\right)dx\\\\\\=-e^{2x}\cos \left(x\right)-\int \:-2e^{2x}\cos \left(x\right)dx\\\\\\=-e^{2x}\cos \left(x\right)-\left(-2\cdot \int \:e^{2x}\cos \left(x\right)dx\right)\\\\\\=-e^{2x}\cos \left(x\right)-\left(-2\left(e^{2x}\sin \left(x\right)-\int \:e^{2x}\cdot \:2\sin \left(x\right)dx\right)\right)\\\\\\=-e^{2x}\cos \left(x\right)-\left(-2\left(e^{2x}\sin \left(x\right)-2\cdot \int \:e^{2x}\sin \left(x\right)dx\right)\right)\\\\\\

\sf \displaystyle \int \:e^{2x}\sin \left(x\right)dx=-e^{2x}\cos \left(x\right)-\left(-2\left(e^{2x}\sin \left(x\right)-2\cdot \int \:e^{2x}\sin \left(x\right)dx\right)\right)~~\\\\\\=-\frac{e^{2x}\cos \left(x\right)}{5}+\frac{2e^{2x}\sin \left(x\right)}{5}\\\\\\\to \boxed{\sf =-\frac{e^{2x}\cos \left(x\right)}{5}+\frac{2e^{2x}\sin \left(x\right)}{5}+C}

Perguntas similares