Determine z E C que satisfaz a condição I z I – i . z = 2 – 4i?
a) z = 4-2i
b) z = 3+3i
c) z = 4+4i
d) z = 4+3i
e) z = 4-3i
Respostas
respondido por:
5
Números Complexos
Chama-se conjunto dos números complexos, e representa-se por C, o conjunto de pares ordenados, ou seja:
z = (x,y)
onde x pertence a R e y pertence a R.
Então, por definição, se z = (x,y) = (x,0) + (y,0)(0,1) onde i=(0,1), podemos escrever que:
z=(x,y)=x+yi
Exemplos:
(5,3)=5+3i
(2,1)=2+i
(-1,3)=-1+3i ...
Dessa forma, todo o números complexo z=(x,y) pode ser escrito na forma z=x+yi, conhecido como forma algébrica, onde temos:
x=Re(z, parte real de z
y=Im(z), parte imaginária de z
Igualdade entre números complexos
Dois números complexos são iguais se, e somente se, apresentam simultaneamente iguais a parte real e a parte imaginária. Assim, se z1=a+bi e z2=c+di, temos que:
z1=z2<==> a=c e b=d
Adição de números complexos
Para somarmos dois números complexos basta somarmos, separadamente, as partes reais e imaginárias desses números. Assim, se z=a+bi e z2=c+di, temos que:
z1+z2=(a+c) + (b+d)
Subtração de números complexos
Para subtrairmos dois números complexos basta subtrairmos, separadamente, as partes reais e imaginárias desses números. Assim, se z=a+bi e z2=c+di, temos que:
z1-z2=(a-c) + (b-d)
Potências de i
Se, por definição, temos que i = - (-1)1/2, então:
i0 = 1
i1 = i
i2 = -1
i3 = i2.i = -1.i = -i
i4 = i2.i2=-1.-1=1
i5 = i4. 1=1.i= i
i6 = i5. i =i.i=i2=-1
i7 = i6. i =(-1).i=-i ......
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás