• Matéria: Matemática
  • Autor: carolll236
  • Perguntado 9 anos atrás

Sejam v⃗ 1=(1,3), v⃗ 2=(−1,5), v⃗ 3=(4,−3) e v⃗ 4=(3,0). Determine x+y onde v⃗ 1=xv⃗ 2+yv⃗ 4.

Respostas

respondido por: Anônimo
1
Boa tarde Carol!

Solução!

 \vec{v}_{1}=(1,3)\\\\\\
 \vec{v}_{2}=(-1,5)\\\\\\
\vec{v}_{3}=(4,-3)\\\\\\
\vec{v}_{4}=(3,0)

A ~~express\~ao~~vetorial~~e~~dada~~por.


\vec{v_{1}}=x(\vec{v_{2}})+y( \vec{v_{4}})\\\\\\\
Substituindo~~os~~vetores~~na~~express\~ao~~fica~~assim!\\\\\\\\
(1,3)=x(-1,5)+y(3,0)\\\\\\\
(1,3)=(-1x,5x)+(3y,0y)\\\\\\\
Veja,saimos~~em~~um~~ sistema~~linear~~com~~duas~~variaveis.\\\\\\
\begin{cases}-1x+3y=1\\\\\
~~5x+0y=3
\end{cases}\\\\\\\\\
5x=3

\boxed{x= \dfrac{3}{5}}\\\\\\\\\
-1(\dfrac{3}{5})+3y=1\\\\\\\\ 
-\dfrac{3}{5}+3y=1\\\\\\\
-3+15y=5\\\\\\\
15y=8\\\\\\\
\boxed{y= \dfrac{8}{15}}

Logo!\\\\\
~~x~~+~y\\\\\
 \dfrac{3}{15}+ \dfrac{8}{15}= \dfrac{11}{15} \\\\\\\
\boxed{Resposta:~~x+y= \dfrac{11}{15}}


Boa tarde!
Bons estudos!





Anônimo: Qualquer dúvida comente aqui!
carolll236: DEPOIS EU CONSEGUI FAZER MAS DEU 17/15
carolll236: Obrigada
Perguntas similares