• Matéria: Matemática
  • Autor: m4rcelin
  • Perguntado 9 anos atrás

Alguém me ajuda? Assunto: Relação de Girard.

Anexos:

Respostas

respondido por: Anônimo
1
Bom dia!

Solução!

Observe que a relação de Girard já esta colocada,agora precisa encaixar o polinômio na relação, para isso precisamos conhecer seus coeficientes.
Vou chamar alfa,beta e gama de a,b e c.

3 x^{3}-13 x^{2} +11x-11=0\\\\\\\
a=3\\\\\\\
b=-13\\\\\\\
c=11\\\\\\\
d=-8\\\\\\\\\\\\\\
a+b+c= \frac{13}{3}\\\\\\
ab+ac+bc= \frac{11}{3}\\\\\\\
a.b.c= \frac{8}{3}

Veja a expressão! Para chegarmos ao resultado,nas duas partes do lado direito vamos ter que simplificar.Vejamos como.

y=(a+b+c)+(ab+bc+ac)+\bigg( \dfrac{1}{a}+ \dfrac{1}{b}+ \dfrac{1}{c}\bigg)+\bigg( \dfrac{1}{ab}+ \dfrac{1}{bc}+ \dfrac{1}{ac}\bigg)\\\\\\\\\\\\\
 \boxed{\bigg( \dfrac{1}{a}+ \dfrac{1}{b}+ \dfrac{1}{c}\bigg)=\bigg( \dfrac{bc+ac+ab}{a.b.c}\bigg)}\\\\\\\\\\\\
\boxed{\bigg( \dfrac{1}{ab}+ \dfrac{1}{bc}+ \dfrac{1}{ac}\bigg)=(a+b+c). \bigg(\dfrac{1}{a}+ \dfrac{1}{b}+ \dfrac{1}{c}\bigg)=\bigg(\dfrac{a+b+c}{a.b.c} \bigg)}

Reescrevendo a expressão fica assim!

y=(a+b+c)+(ab+bc+ac)+\bigg( \dfrac{bc+ac+ab}{a.b.c}\bigg)+ \bigg(\dfrac{a+b+c}{a.b.c}\bigg)\\\\\\\\\
y= \dfrac{13}{3}+ \dfrac{11}{3}+ \dfrac{11}{ \dfrac{3}{ \dfrac{8}{3} } }+ \dfrac{13}{ \dfrac{3}{ \dfrac{8}{3} } }\\\\\\\\\ 

y= \dfrac{13}{3}+ \dfrac{11}{3}+ \dfrac{11}{3}. \frac{3}{8}+ \frac{13}{3}. \frac{3}{8}\\\\\\\\      
y= \dfrac{13}{3}+ \dfrac{11}{3}+ \dfrac{11}{8}+ \frac{13}{8}\\\\\\\\ 

y= \dfrac{104+88+33+39}{24}\\\\\\\
y= \dfrac{264}{24} \\\\\\
y=11


\boxed{Resposta~~y=11~~\boxed{Alternativa~~~d}}


Bom dia!
Bons estudos!

Perguntas similares