• Matéria: Matemática
  • Autor: juliamariabra
  • Perguntado 9 anos atrás

Em um quintal, há galinhas e coelhos. Sabendo que são, ao todo, 20 cabeças e 58 pés, determine o número de galinhas e de coelhos.


BrinaSabrina: galihas e coelhos
BrinaSabrina: então fica assim:
BrinaSabrina: 20:2=10
BrinaSabrina: e 58:2=29
BrinaSabrina: cada galinha tem 1 cabeças e 2 patas.total das galinha= 10 porque é a metade do total de animais que tem aí!
BrinaSabrina: e cada coelho tbm tem a mesma coisa

Respostas

respondido por: MATHSPHIS
69
g + c = 20
2g + 4c = 58

2g + 2c = 40
2g + 4c = 58

2c = 18
c = 9

São 9 coelhos e 11 galinhas
respondido por: AntoniLAD
26
Sabemos que a galinha tem 2 patas
E coelhos 4 patas

Agora vamos para o sistema:

x+y=20   .(-2)
2x+4y=58

-2x-2y=-40
2x+4y=58

Somando e subtraindo:

-2x+2x/-2y+4y/58-40
  0      2y    18

2y=18
y=18/2
y=9

Voltando ao sistema anterior

X+y=20
x+9=20
x=20-9
x=11

Portanto há 9 colehos e 11 galinhas

Perguntas similares