No desenvolvimento do binômio (x² - 2)⁵ , tem-se: (x² - 2)⁵ = x¹⁰ + mx⁸ + 40x⁶ - 80x⁴ + 80x² + n. Qual é o valor de m + n?
Respostas
respondido por:
10
Olá, novamente!
Elierwb, fazendo uso da definição de Binômio de Newton teremos:
![\\ \mathsf{(a + b)^n = \binom{n}{0} \cdot (a)^{n - 0} \cdot (b)^0 + \binom{n}{1} \cdot (a)^{n - 1} \cdot (b)^1 + ... + \binom{n}{n} \cdot (a)^{n - n} \cdot (b)^n} \\\\\\ \mathsf{(x^2 - 2)^5 = \binom{5}{0} \cdot (x^2)^{5 - 0} \cdot (- 2)^0 + \binom{5}{1} \cdot (x^2)^{5 - 1} \cdot (- 2)^1 + ... + \binom{5}{5} \cdot (x^2)^{5 - 5} \cdot (- 2)^5} \\ \mathsf{(a + b)^n = \binom{n}{0} \cdot (a)^{n - 0} \cdot (b)^0 + \binom{n}{1} \cdot (a)^{n - 1} \cdot (b)^1 + ... + \binom{n}{n} \cdot (a)^{n - n} \cdot (b)^n} \\\\\\ \mathsf{(x^2 - 2)^5 = \binom{5}{0} \cdot (x^2)^{5 - 0} \cdot (- 2)^0 + \binom{5}{1} \cdot (x^2)^{5 - 1} \cdot (- 2)^1 + ... + \binom{5}{5} \cdot (x^2)^{5 - 5} \cdot (- 2)^5}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%28a+%2B+b%29%5En+%3D+%5Cbinom%7Bn%7D%7B0%7D+%5Ccdot+%28a%29%5E%7Bn+-+0%7D+%5Ccdot+%28b%29%5E0+%2B+%5Cbinom%7Bn%7D%7B1%7D+%5Ccdot+%28a%29%5E%7Bn+-+1%7D+%5Ccdot+%28b%29%5E1+%2B+...+%2B+%5Cbinom%7Bn%7D%7Bn%7D+%5Ccdot+%28a%29%5E%7Bn+-+n%7D+%5Ccdot+%28b%29%5En%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%28x%5E2+-+2%29%5E5+%3D+%5Cbinom%7B5%7D%7B0%7D+%5Ccdot+%28x%5E2%29%5E%7B5+-+0%7D+%5Ccdot+%28-+2%29%5E0+%2B+%5Cbinom%7B5%7D%7B1%7D+%5Ccdot+%28x%5E2%29%5E%7B5+-+1%7D+%5Ccdot+%28-+2%29%5E1+%2B+...+%2B+%5Cbinom%7B5%7D%7B5%7D+%5Ccdot+%28x%5E2%29%5E%7B5+-+5%7D+%5Ccdot+%28-+2%29%5E5%7D)
Mas, como podes notar, não conhecemos os coeficientes do segundo e último termo. Desse modo, podemos encontrá-los aplicando a definição acima, veja:
Coeficiente do segundo termo:
![\\ \mathsf{\binom{5}{1} \cdot (x^2)^{5 - 1} \cdot (- 2)^1 =} \\\\\\ \mathsf{\frac{5!}{(5 - 1)!1!} \cdot (x^2)^4 \cdot (- 2) =} \\\\\\ \mathsf{\frac{5 \cdot 4!}{4! \cdot 1} \cdot x^8 \cdot (- 2) =} \\\\\\ \mathsf{5 \cdot x^8 \cdot (- 2) =} \\\\\\ \boxed{\mathsf{- 10x^8}} \\ \mathsf{\binom{5}{1} \cdot (x^2)^{5 - 1} \cdot (- 2)^1 =} \\\\\\ \mathsf{\frac{5!}{(5 - 1)!1!} \cdot (x^2)^4 \cdot (- 2) =} \\\\\\ \mathsf{\frac{5 \cdot 4!}{4! \cdot 1} \cdot x^8 \cdot (- 2) =} \\\\\\ \mathsf{5 \cdot x^8 \cdot (- 2) =} \\\\\\ \boxed{\mathsf{- 10x^8}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Cbinom%7B5%7D%7B1%7D+%5Ccdot+%28x%5E2%29%5E%7B5+-+1%7D+%5Ccdot+%28-+2%29%5E1+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cfrac%7B5%21%7D%7B%285+-+1%29%211%21%7D+%5Ccdot+%28x%5E2%29%5E4+%5Ccdot+%28-+2%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cfrac%7B5+%5Ccdot+4%21%7D%7B4%21+%5Ccdot+1%7D+%5Ccdot+x%5E8+%5Ccdot+%28-+2%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B5+%5Ccdot+x%5E8+%5Ccdot+%28-+2%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7B-+10x%5E8%7D%7D)
Daí, tiramos que![\boxed{\mathsf{m = - 10}} \boxed{\mathsf{m = - 10}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathsf%7Bm+%3D+-+10%7D%7D)
Coeficiente do último termo:
![\\ \mathsf{\binom{5}{5} \cdot (x^2)^{5 - 5} \cdot (- 2)^5 =} \\\\\\ \mathsf{\frac{5!}{(5 - 5)!5!} \cdot (x^2)^0 \cdot (- 2)^5 =} \\\\\\ \mathsf{\frac{5!}{0! 5!} \cdot x^0 \cdot (- 32) =} \\\\\\ \mathsf{1 \cdot 1 \cdot (- 32) =} \\\\\\ \boxed{\mathsf{- 32}} \\ \mathsf{\binom{5}{5} \cdot (x^2)^{5 - 5} \cdot (- 2)^5 =} \\\\\\ \mathsf{\frac{5!}{(5 - 5)!5!} \cdot (x^2)^0 \cdot (- 2)^5 =} \\\\\\ \mathsf{\frac{5!}{0! 5!} \cdot x^0 \cdot (- 32) =} \\\\\\ \mathsf{1 \cdot 1 \cdot (- 32) =} \\\\\\ \boxed{\mathsf{- 32}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Cbinom%7B5%7D%7B5%7D+%5Ccdot+%28x%5E2%29%5E%7B5+-+5%7D+%5Ccdot+%28-+2%29%5E5+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cfrac%7B5%21%7D%7B%285+-+5%29%215%21%7D+%5Ccdot+%28x%5E2%29%5E0+%5Ccdot+%28-+2%29%5E5+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cfrac%7B5%21%7D%7B0%21+5%21%7D+%5Ccdot+x%5E0+%5Ccdot+%28-+32%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B1+%5Ccdot+1+%5Ccdot+%28-+32%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7B-+32%7D%7D)
Daí, tiramos que![\boxed{\mathsf{n = - 32}} \boxed{\mathsf{n = - 32}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathsf%7Bn+%3D+-+32%7D%7D)
Por fim, concluímos que![\boxed{\boxed{\mathsf{m + n = - 42}}} \boxed{\boxed{\mathsf{m + n = - 42}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7Bm+%2B+n+%3D+-+42%7D%7D%7D)
Elierwb, fazendo uso da definição de Binômio de Newton teremos:
Mas, como podes notar, não conhecemos os coeficientes do segundo e último termo. Desse modo, podemos encontrá-los aplicando a definição acima, veja:
Coeficiente do segundo termo:
Daí, tiramos que
Coeficiente do último termo:
Daí, tiramos que
Por fim, concluímos que
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás