• Matéria: Matemática
  • Autor: Silvakwma
  • Perguntado 9 anos atrás

Calcule a soma do somatório de (1/2^n + 1/3^n) com n variando de 1 à ∞ ? "Caso tenham dúvida do enunciado vide anexo com a questão"

Anexos:

Respostas

respondido por: Anônimo
0

Boa noite Silva!

Solução!

\displaystyle \sum_{n=1}^{\infty}\bigg(
\frac{1}{2^{n} } + \frac{1}{3^{n}}\bigg)\\\\\\\
Reescrevendo~~o~~somatorio!\\\\\\\\ \displaystyle \sum_{n=1}^{\infty}\bigg(
\frac{1}{2^{n} }\bigg) +\displaystyle\sum_{n=1} ^{\infty}
\bigg(\frac{1}{3^{n}}\bigg)\\\\\\\ n=\{1,2,3,............\}\\\\\ a1=
\dfrac{1}{2^{1} }= \dfrac{1}{2} \\\\\\\ a2= \dfrac{1}{2^{2} }= \dfrac{1}{4}
\\\\\\\ a3= \dfrac{1}{2^{3} }= \dfrac{1}{8} \\\\\\\\\\\ S_{1} = \dfrac{a1}{1-q}

 

S_{1} = \dfrac{1}{ \dfrac{2}{ 1-\dfrac{1}{2} } }\\\\\\

S_{1} = \dfrac{1}{ \dfrac{2}{\dfrac{2-1}{2} } }\\\\\\

S_{1} = \dfrac{1}{ \dfrac{2}{\dfrac{1}{2} } }\\\\\\

S_{1} = \dfrac{1}{2 }\times\dfrac{2}{1} \\\\\\

\boxed{S_{1} = 1}


Fazendo o mesmo processo para o segundo somatório.


\displaystyle\sum_{n=1} ^{\infty} \bigg(\frac{1}{3^{n}}\bigg)\\\\\\\ n=\{1,2,3,............\}\\\\\\\\
a1= \dfrac{1}{3^{1} } = \dfrac{1}{3}\\\\\\\
 a2= \dfrac{1}{3^{2} } = \dfrac{1}{9}\\\\\\\
a1= \dfrac{1}{3^{3} } = \dfrac{1}{27}



S_{2} = \dfrac{1}{ \dfrac{3}{ 1-\dfrac{1}{3} } }\\\\\\

S_{2} = \dfrac{1}{ \dfrac{3}{\dfrac{3-1}{3} } }\\\\\\

S_{2} = \dfrac{1}{ \dfrac{3}{\dfrac{2}{3} } }\\\\\\

S_{2} = \dfrac{1}{3 }\times\dfrac{3}{2} \\\\\\

\boxed{S_{2} =  \frac{1}{2} }


S_{\infty}=S1+S2\\\\\\\
S_{\infty}=1+ \dfrac{1}{2}\\\\\\
S_{\infty}=\dfrac{2+1}{2}\\\\\\
S_{\infty}=\dfrac{3}{2}\\\\\\



\boxed{Resposta:~~\displaystyle \sum_{n=1}^{\infty}\bigg( \frac{1}{2^{n} } + \frac{1}{3^{n}}\bigg)= \frac{3}{2}}



Boa noite!

Bons estudos!


Perguntas similares