Um cone circular reto tem raio da base de 3cm e uma altura de 5cm , segundo os dados fornecidos , calcule :
A) área de base
B) área lateral
C) área total
D) o volume do cone
Respostas
respondido por:
3
A) A base do cone é uma circunferência de raio 3, área de circunferência é calculada usando a fórmula: Área = πR² (Sendo R=raio), Área = π3² = π.9
Ou seja, a área da base é 9π, no enunciado ele não nos dá o valor de π, mas π é aproximadamente 3,14 então, também podemos dizer que a área é aproximadamente 3,14 x 9 = 28,26 cm²
B) Para calcular a área lateral, utilizamos a fórmula: AL= πRg, sendo R = raio e g = geratriz (a geratriz do cone é obtida utilizando o teorema de pitágoras, então: g² = h² + R²)
g²=5² + 3²
g²=25+9
g²=34
g=√34
Utilizando AL= πRg, AL= π3√34, se substituir π por 3,14 temos:
3,14 x 3√34 = 9,42√34
C) A área total é igual a área da base mais a área lateral, então basta somar: 28,26 + 9,42√34
D) Volume de cone é dado por: 1/3πR²h, então:
Volume = 1/3 x π x 3² x 5
Volume = 1/3 x π x 9 x 5
Volume = 15π, se preferir substitua π por 3,14
Volume = 15 x 3,14 = 47,1 cm³
LEMBRANDO QUE EU SUBSTITUI π POR 3,14 MAS NÃO É NECESSÁRIO, QUANDO O EXERCÍCIO NÃO FORNECER O VALOR DE π, ENTÃO NESSES CASOS É MELHOR DEIXAR A RESPOSTA COM π MESMO...
Ou seja, a área da base é 9π, no enunciado ele não nos dá o valor de π, mas π é aproximadamente 3,14 então, também podemos dizer que a área é aproximadamente 3,14 x 9 = 28,26 cm²
B) Para calcular a área lateral, utilizamos a fórmula: AL= πRg, sendo R = raio e g = geratriz (a geratriz do cone é obtida utilizando o teorema de pitágoras, então: g² = h² + R²)
g²=5² + 3²
g²=25+9
g²=34
g=√34
Utilizando AL= πRg, AL= π3√34, se substituir π por 3,14 temos:
3,14 x 3√34 = 9,42√34
C) A área total é igual a área da base mais a área lateral, então basta somar: 28,26 + 9,42√34
D) Volume de cone é dado por: 1/3πR²h, então:
Volume = 1/3 x π x 3² x 5
Volume = 1/3 x π x 9 x 5
Volume = 15π, se preferir substitua π por 3,14
Volume = 15 x 3,14 = 47,1 cm³
LEMBRANDO QUE EU SUBSTITUI π POR 3,14 MAS NÃO É NECESSÁRIO, QUANDO O EXERCÍCIO NÃO FORNECER O VALOR DE π, ENTÃO NESSES CASOS É MELHOR DEIXAR A RESPOSTA COM π MESMO...
tomlisboacastro:
Se você tiver o gabarito, confere aí e me avisa se estiver errado...
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás