• Matéria: Matemática
  • Autor: cruzeiro20166
  • Perguntado 9 anos atrás


Quanto que é a derivada da função ?
y= ( x^{2} +1) ^{3} .ln 3x

Respostas

respondido por: acidbutter
0
y(x)=\left(x^2+1\right)^{3}\cdot\ln(3x)\implies \\u(v)=(v)^3\\v(x)=x^2+1\\w(t)=\ln t\\t(x)=3x\\\\\displaystyle \frac{dy}{dx}=\frac{du}{dx}\cdot w+\frac{dw}{dx}\cdot u\\\\\frac{du}{dx}=\frac{d}{dv}v^3\cdot\frac{d}{dx}x^2+1=3v^2\cdot2x=\underline{6x(x^2+1)^2}\\\\ \frac{dw}{dx}=\frac{d}{dt}\ln t\cdot\frac{d}{dx}3x=\frac{1}{t}\cdot 3=\frac{3}{3x}=\underline{\frac{1}{x}}
\displaystyle \\\\\frac{dy}{dx}=\left(6x(x^2+1)^2\right)\cdot\ln(3x)+\frac{1}{x}\cdot(x^2+1)^3=\\\\\frac{x\left(6x(x^2+1)^2\ln(3x)\right)}{x}+\frac{(x^2+1)^3}{x}=\\\\\\\boxed{\frac{\left(6x^2(x^2+1)^2\ln(3x)\right)+(x^2+1)^3}{x}}

Alexandrepsluz: Parabéns.
Alexandrepsluz: Só uma pequena correção:
Alexandrepsluz: (〖〖6x〗^2 〖(x^2+1)〗^2 ln⁡(3x)+(x^2+1)〗^3)/x
acidbutter: eu percebi na hora que vc falou, eu cacei o erro e achei hueheu valeu! :D
Alexandrepsluz: não ficou muito legal por aqui não. rsrsr
Alexandrepsluz: blz
respondido por: Alexandrepsluz
0
Primeiro: regra da multiplicação. 
Segundo: regra da cadeia. 
Terceiro: simplificar/reduzir a expressão.
Anexos:
Perguntas similares