• Matéria: Matemática
  • Autor: Ingred123cpm
  • Perguntado 9 anos atrás

2-) Considere as proporções  \frac{2x}{x-3} =  \frac{4}{3}  e  \frac{2}{y} =  \frac{6}{15} .  Nessas condições, calcule o valor de  x^{2} +  y^{2}

Respostas

respondido por: viniciushenrique406
1
\Large\textsf{Primeira equa\c{c}\~ao, descobrindo o valor de x:}


\mathsf{\dfrac{2x}{x-3}=\dfrac{4}{3}}\\\\\\\\\mathsf{3}{\begin{pmatrix}\mathsf{\dfrac{2x}{x-3}}\end{pmatrix}}\mathsf{=\dfrac{4}{3\hspace{-7}\diagup}\cdot 3\hspace{-7}\diagup}\\\\\\\mathsf{\dfrac{6x}{x-3}=4}\\\\\\\mathsf{(x\hspace{-7}\diagup-3\hspace{-7}\diagup)}{\begin{pmatrix}
 \mathsf{\dfrac{6x}{x\hspace{-7}\diagup-3\hspace{-7}\diagup}} 
\end{pmatrix}\mathsf{=4(x-3)}}\\\\\\\mathsf{6x=4x-12}\\\\\\\mathsf{2x=-12}\\\\\\\mathsf{x=\dfrac{-12}{2}}\\\\\\\fbox{$\mathsf{x=-6}$}


\Large\textsf{Segunda equa\c{c}\~ao, descobrindo o valor de y:}



\mathsf{\dfrac{2}{y}=\dfrac{6}{15}}\\\\\\\\\mathsf{15}\begin{pmatrix}\mathsf{\dfrac{2}{y}}
\end{pmatrix}\mathsf{=\dfrac{6}{15\hspace{-9}\diagup}\cdot 15\hspace{-9}\diagup}\\\\\\\mathsf{\dfrac{30}{y}=6}\\\\\\\mathsf{y=\dfrac{30}{6}}\\\\\\\fbox{$\mathsf{y=5}$}


\Large\begin{array}{l}\mathsf{Descobrindo~o~resultado~da~express\~ao~x^2+y^2:}\end{array}



\mathsf{x^2+y^2}\\\\\\\mathsf{=(-6)^2+5^2}\\\\\\\mathsf{=36+25}\\\\\\\mathsf{=61}\\\\\\\fbox{$\mathsf{x^2+y^2=61}$}
Perguntas similares