• Matéria: Matemática
  • Autor: jnvs
  • Perguntado 9 anos atrás

TRIGONOMETRIA.
Calcule a medida da altura H de uma torre de transmissão de energia elétrica, sabendo-se que a medida da distância do ponto em que se encontra o observador até
sua base é de 60 m, e do qual se vê a torre sob um ângulo de 60°.

Resultado:
aproximadamente H = 104 m

Cálculo detalhado por favor.

Respostas

respondido por: ericalimeira
13
Bom vc começa analisando se vai usar seno, cosseno ou tangente, neste caso vamos usar a tangente pq temos os valores dos catetos que são 60 m e x que é a altura.
Vamos usar a formula:
tangente 60º= cateto oposto/ cateto adjacente
  ( os valores de seno, cosseno e tangente geralmente são dados na questão)

tangente 60º = √3 fazendo na calculadora vai ter o resultado  1,7321

tan60º=  X / 60

X= 1,7321 * 60  

X= 103,92304 portanto

X= aproximadamente 104 metros

Espero ter ajudado, se tiver duvidas deixe nos comentarios. Um abraço!!!!!


jnvs: Muito bom, eu achei que poderia ser o seno, mas encontrei esse resultado com a tangente, porém fiquei confusa com esse H, então para sanar a dúvida, resolvi perguntar. Obrigada!
ericalimeira: Que bom que ajudei, precisando estamos ai...
jnvs: Ok! até mais.
jnvs: Olá, poderia ajudar por favor!?
jnvs: TRIGONOMETRIA.
Determine a medida do ângulo (α), do qual é visto um edifício de 30 m de altura e que dista do observador 50 m.
Cálculo detalhado por favor.
Resultado: 31 graus

Imagem em anexo.
ericalimeira: Este calculo é quase o mesmo deste que fiz, só que vc pega tangente alfa= cateto oposto/ cateto adjacente tangente de alfa= 30/50 corta os zeros e divide 3 por 5 tendo como resultado 0,6, você vai em uma lista trigonométrica e vê o valor do angulo que corresponde a 0,6 na tabela, vera que é 31º .
jnvs: Você saberia dizer se existe alguma fórmula para descobrir o ângulo sem precisar consultar a tabela? Obrigada.
Perguntas similares