• Matéria: Matemática
  • Autor: l4ayaneadbianacfern
  • Perguntado 9 anos atrás

– um objeto lançado ao ar desenvolve uma trajetória descrita por y = - 3x² - 3x 9, onde y é a altura em metros. qual foi a altura máxima, em metros, atingida por esse objeto?

Respostas

respondido por: NinnoNascimento
23
Podemos usar uma fórmula do vértice da parábola , nesse caso Yv ( y vértice)

que diz a altura máxima da parábola:

Yv = \frac{-delta}{4a}

calculando Δ = b² - 4ac
Δ = (-3)²- 4 (-3).9 = 117

Assim

Yv = \frac{-117}{4(-3)} = 39/4 = 9,75 metros

Podemos achar através da derivada derivamos a função
 y = - 3x² - 3x+ 9
y' = -6x -3      fazemos  y' = 0 derivada zero ( ponto máximo da parábola)

-6x - 3 = 0

x = -1/2 isso quer dizer que quando x = -1/2 a parábola atinge seu ponto máximo.

Se substituirmos -1/2 na função

y = - 3x² - 3x +9   vamos achar exatamente  39/4 =   9, 75 m
Perguntas similares