• Matéria: Matemática
  • Autor: redwhill14
  • Perguntado 9 anos atrás

A soma de todos os numeros naturais ímpares de 3 algarismos é?!

Anexos:

Respostas

respondido por: Oguchi
1
101, 103, 105... 995, 997, 999

Observamos uma PA de razão 2 começando de 101

101+2(n-1)=999
2(n-1)=898
n-1=449
n=450 (999 é o 450-ésimo termo da sequência)

S=(101+999)450/2
S=1100.225
S=247500
respondido por: AlissonLaLo
4

\Large\boxed{\boxed{\boxed{{Ola\´\ Red}}}}}

Progressão aritmética .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

a₁ = 101

n = ?

r = 2

an = 999

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

an = a₁ + (n-1) . r

999 = 101 + (n-1) . 2

999 = 101 + 2n - 2

999 = 99 + 2n

999 - 99 = 2n

900 = 2n

900/2 = n

450 = n

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora vamos a soma de todos os termos.

Sn = (a₁ + an) . n / 2

S₄₅₀ = (101 + 999) . 450 / 2

S₄₅₀ = 1100 . 450 / 2

S₄₅₀ = 495000 / 2

S₄₅₀ = 247500

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto a soma de todos os números naturais ímpares de 3 algarismos é 247500.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas similares