• Matéria: Matemática
  • Autor: wayllaplysna
  • Perguntado 9 anos atrás

Considere x um ângulo agudo, tal que sen.x =  \frac{2}{5} . Calcule :
A) cos x
B) tg x
C) sec x
D) cossec x
E) cotg x

Respostas

respondido por: Lukyo
2
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/7986654

_______________


Sendo um ângulo agudo \mathsf{x} e sabemos que


\mathsf{sen\,x=\dfrac{\,2\,}{5}\qquad\quad(i)}\\\\ \mathsf{5\,sen\,x=2}


A) Elevando os dois lados ao quadrado, obtemos

\mathsf{(5\,sen\,x)^2=2^2}\\\\ \mathsf{25\,sen^2\,x=4}\qquad\textsf{(mas }\mathsf{sen^2 x=1-cos^2\,x}\textsf{)}\\\\ \mathsf{25\cdot (1-cos^2\,x)=4}\\\\ \mathsf{25-25\,cos^2\,x=4}\\\\ \mathsf{25-4=25\,cos^2\,x}

\mathsf{25\,cos^2\,x=21}\\\\ \mathsf{cos^2\,x=\dfrac{21}{25}}\\\\\\ \mathsf{cos\,x=\pm\,\sqrt{\dfrac{21}{25}}}\\\\\\ \mathsf{cos\,x=\pm\,\dfrac{\sqrt{21}}{5}}


Como \mathsf{x} é agudo, o seu cosseno é positivo. Portanto,

\boxed{\begin{array}{c}\mathsf{cos\,x=\dfrac{\sqrt{21}}{5}} \end{array}}\qquad\quad\checkmark


B) \mathsf{tg\,x=\dfrac{sen\,x}{cos\,x}}

\mathsf{tg\,x=\dfrac{\;\frac{\sqrt{21}}{5}\;}{\frac{2}{5}}}\\\\\\ \mathsf{tg\,x=\dfrac{\sqrt{21}}{\diagup\!\!\!\! 5}\cdot \dfrac{\diagup\!\!\!\! 5}{2}}\\\\\\ \boxed{\begin{array}{c}\mathsf{tg\,x=\dfrac{\sqrt{21}}{2}} \end{array}}\qquad\quad\checkmark


C) \mathsf{sec\,x=\dfrac{1}{cos\,x}}

\mathsf{sec\,x=\dfrac{1}{\;\frac{\sqrt{21}}{5}\;}}\\\\\\ \boxed{\begin{array}{c}\mathsf{sec\,x=\dfrac{5}{\sqrt{21}}} \end{array}}\qquad\quad\checkmark


D) \mathsf{cossec\,x=\dfrac{1}{sen\,x}}

\mathsf{cossec\,x=\dfrac{1}{\;\frac{2}{5}\;}}\\\\\\ \boxed{\begin{array}{c}\mathsf{cossec\,x=\dfrac{\,5\,}{2}} \end{array}}\qquad\quad\checkmark


E) \mathsf{cotg\,x=\dfrac{cos\,x}{sen\,x}}

\mathsf{cotg\,x=\dfrac{\;\frac{\sqrt{21}}{5}}{\frac{2}{5}}}\\\\\\ \mathsf{cotg\,x=\dfrac{\sqrt{21}}{\diagup\!\!\!\! 5}\cdot \dfrac{\diagup\!\!\!\! 5}{2}}\\\\\\ \boxed{\begin{array}{c}\mathsf{cotg\,x=\dfrac{\sqrt{21}}{2}} \end{array}}\qquad\quad\checkmark


Bons estudos! :-)

Perguntas similares