Respostas
respondido por:
2
Caso tiver problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8046465
_______________
![\mathsf{cos(3x)=-1}\\\\ \mathsf{cos(3x)=cos\,\pi}\\\\\\ \mathsf{3x=\pi+2k\cdot \pi}\\\\ \mathsf{x=\dfrac{1}{3}\cdot (\pi+2k\cdot \pi)}\\\\\\ \mathsf{x=\dfrac{\pi}{3}+\dfrac{2k\cdot \pi}{3}} \mathsf{cos(3x)=-1}\\\\ \mathsf{cos(3x)=cos\,\pi}\\\\\\ \mathsf{3x=\pi+2k\cdot \pi}\\\\ \mathsf{x=\dfrac{1}{3}\cdot (\pi+2k\cdot \pi)}\\\\\\ \mathsf{x=\dfrac{\pi}{3}+\dfrac{2k\cdot \pi}{3}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%283x%29%3D-1%7D%5C%5C%5C%5C+%5Cmathsf%7Bcos%283x%29%3Dcos%5C%2C%5Cpi%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B3x%3D%5Cpi%2B2k%5Ccdot+%5Cpi%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%3D%5Cdfrac%7B1%7D%7B3%7D%5Ccdot+%28%5Cpi%2B2k%5Ccdot+%5Cpi%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx%3D%5Cdfrac%7B%5Cpi%7D%7B3%7D%2B%5Cdfrac%7B2k%5Ccdot+%5Cpi%7D%7B3%7D%7D)
onde
é inteiro.
Vejamos o que acontece com
quando variamos
nos inteiros:
• Para![\mathsf{k=0:} \mathsf{k=0:}](https://tex.z-dn.net/?f=%5Cmathsf%7Bk%3D0%3A%7D)
![\mathsf{x=\dfrac{\pi}{3}}\\\\\\ \mathsf{cos\,x=cos\,\dfrac{\pi}{3}}\\\\\\ \mathsf{cos\,x=\dfrac{\,1\,}{2}}\qquad\quad\checkmark \mathsf{x=\dfrac{\pi}{3}}\\\\\\ \mathsf{cos\,x=cos\,\dfrac{\pi}{3}}\\\\\\ \mathsf{cos\,x=\dfrac{\,1\,}{2}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3Dcos%5C%2C%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3D%5Cdfrac%7B%5C%2C1%5C%2C%7D%7B2%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
• Para![\mathsf{k=2:} \mathsf{k=2:}](https://tex.z-dn.net/?f=%5Cmathsf%7Bk%3D2%3A%7D)
![\mathsf{x=\dfrac{\pi}{3}+\dfrac{2\pi}{3}}\\\\\\ \mathsf{x=\dfrac{3\pi}{3}}\\\\\\ \mathsf{x=\pi}\\\\\\ \mathsf{cos\,x=cos\,\pi}\\\\ \mathsf{cos\,x=-1}\qquad\quad\checkmark \mathsf{x=\dfrac{\pi}{3}+\dfrac{2\pi}{3}}\\\\\\ \mathsf{x=\dfrac{3\pi}{3}}\\\\\\ \mathsf{x=\pi}\\\\\\ \mathsf{cos\,x=cos\,\pi}\\\\ \mathsf{cos\,x=-1}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B%5Cpi%7D%7B3%7D%2B%5Cdfrac%7B2%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx%3D%5Cdfrac%7B3%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx%3D%5Cpi%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3Dcos%5C%2C%5Cpi%7D%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3D-1%7D%5Cqquad%5Cquad%5Ccheckmark)
• Para![\mathsf{k=3:} \mathsf{k=3:}](https://tex.z-dn.net/?f=%5Cmathsf%7Bk%3D3%3A%7D)
![\mathsf{x=\dfrac{\pi}{3}+\dfrac{2\cdot 2\pi}{3}}\\\\\\ \mathsf{x=\dfrac{\pi}{3}+\dfrac{4\pi}{3}}\\\\\\ \mathsf{x=\dfrac{5\pi}{3}}\\\\\\ \mathsf{cos\,x=cos\,\dfrac{5\pi}{3}} \mathsf{x=\dfrac{\pi}{3}+\dfrac{2\cdot 2\pi}{3}}\\\\\\ \mathsf{x=\dfrac{\pi}{3}+\dfrac{4\pi}{3}}\\\\\\ \mathsf{x=\dfrac{5\pi}{3}}\\\\\\ \mathsf{cos\,x=cos\,\dfrac{5\pi}{3}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B%5Cpi%7D%7B3%7D%2B%5Cdfrac%7B2%5Ccdot+2%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx%3D%5Cdfrac%7B%5Cpi%7D%7B3%7D%2B%5Cdfrac%7B4%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx%3D%5Cdfrac%7B5%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3Dcos%5C%2C%5Cdfrac%7B5%5Cpi%7D%7B3%7D%7D)
![\mathsf{cos\,x=cos\!\left(2\pi-\dfrac{\pi}{3} \right )}\\\\\\ \mathsf{cos\,x=cos\,\dfrac{\pi}{3}}\\\\\\ \mathsf{cos\,x=\dfrac{\,1\,}{2}}\qquad\quad\checkmark \mathsf{cos\,x=cos\!\left(2\pi-\dfrac{\pi}{3} \right )}\\\\\\ \mathsf{cos\,x=cos\,\dfrac{\pi}{3}}\\\\\\ \mathsf{cos\,x=\dfrac{\,1\,}{2}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2Cx%3Dcos%5C%21%5Cleft%282%5Cpi-%5Cdfrac%7B%5Cpi%7D%7B3%7D+%5Cright+%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3Dcos%5C%2C%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2Cx%3D%5Cdfrac%7B%5C%2C1%5C%2C%7D%7B2%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
Para outros valores inteiros de
obtemos os mesmos valores acima (esse processo é periódico módulo 3).
Portanto os possíveis valores para
são
e ![\mathsf{\dfrac{\,1\,}{2}.} \mathsf{\dfrac{\,1\,}{2}.}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B%5C%2C1%5C%2C%7D%7B2%7D.%7D)
Bons estudos! :-)
_______________
onde
Vejamos o que acontece com
• Para
• Para
• Para
Para outros valores inteiros de
Portanto os possíveis valores para
Bons estudos! :-)
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás