• Matéria: Matemática
  • Autor: JulianaOlivera5
  • Perguntado 9 anos atrás

usando a definição, calcule a derivada f (x) = 1/x com a=2

Respostas

respondido por: Niiya
1
Pela definição,

f'(2)=\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}

se o limite existir.
____________________________

Mas, note que

\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=\lim\limits_{x\to2}\dfrac{\big(\frac{1}{x}\big)-\big(\frac{1}{2}\big)}{x-2}\\\\\\\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=\lim\limits_{x\to2}\dfrac{\big(\frac{2}{2x}\big)-\big(\frac{x}{2x}\big)}{x-2}\\\\\\\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=\lim\limits_{x\to2}\,\,\dfrac{\big(\frac{2-x}{2x}\big)}{x-2}\\\\\\\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=\lim\limits_{x\to2}\,\,\dfrac{2-x}{2x\cdot(x-2)}

\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=\lim\limits_{x\to2}\,\,\dfrac{-(x-2)}{2x\cdot(x-2)}

Como x\to2~~\Rightarrow~~x\neq2~~\Rightarrow~x-2\neq0, então podemos cancelar x-2, ficando com

\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=\lim\limits_{x\to2}-\dfrac{1}{2x}

Agora podemos substituir x=2 normalmente:

\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=-\dfrac{1}{2\cdot2}\\\\\\\boxed{\boxed{\lim\limits_{x\to2}\dfrac{f(x)-f(2)}{x-2}=-\dfrac{1}{4}}}

Portanto, o limite existe, e

\boxed{\boxed{f'(2)=-\dfrac{1}{4}}}

JulianaOlivera5: me ajudou muito, obrigada!
Niiya: Disponha :)
Perguntas similares