• Matéria: Matemática
  • Autor: lêsouza12
  • Perguntado 9 anos atrás

Calcule log 5 na base 3.log27 na base 4.log de raiz quadrada de 2 na base 25

Respostas

respondido por: Anônimo
63
Boa noite!

Solução!

Vamos usar mudança de base e logaritmo da potência.

Exemplo!

\boxed{log_{a}b= \frac{logb}{loga}}

log_{3} 5 \times log_{4}27 \times log_{25}\sqrt{2}\\\\\\\\ \dfrac{log5 \times log27\times log \sqrt{2}}{log3\times log4\times log25}\\\\\\\\\\ \dfrac{log5 \times log3^{3}\times log 2^{ \frac{1}{2}}}{log3\times log2^{2} \times log5^{2} }\\\\\\\\\ \dfrac{log5 \times 3log3\times \frac{1}{2} log 2}{log3\times 2log2 \times 2log5 }


Veja: como temos uma divisão e uma multiplicação, podemos simplificar alguns logs,sendo que todos estão na base 10.


 \dfrac{1 \times 3\times  \frac{1}{2}}{1\times 2.1  \times 2 }\\\\\\\\\
  \dfrac{  \dfrac{3}{2}}{4 }\\\\\\\\\
 \dfrac{3}{2}\times\dfrac{1}{4}= \dfrac{3}{8}

Boa noite!



lêsouza12: Muito Obrigada!❤❤
Perguntas similares