Me ajudeem pfv
Determine o valor de m para que a função quadrática F(-x)= (m+1) x^2 + (m-1)x +m não tenha raízes reais.
Respostas
respondido por:
1
F(-x) = (m+1)x² + (m-1)x + m
Resolvendo em "x" pelo Método de Bháskara:
Para que F(-x) não tenha raízes reais:
(m-1)² - 4(m+1)m < 0 (raíz quadrada de números negativos)
(m-1)² - 4(m+1)m < 0
m² - 2m + 1 - 4m² - 4m < 0
- 3m² - 6m + 1 < 0
3m² + 6m - 1 > 0
A equação acima representa uma parábola com cavidade para cima, portanto, por Bháskara
m >
Ou
m <
Logo o conjunto solução para m, tal que F(-x) não tenha raízes reais é dado por:
Resolvendo em "x" pelo Método de Bháskara:
Para que F(-x) não tenha raízes reais:
(m-1)² - 4(m+1)m < 0 (raíz quadrada de números negativos)
(m-1)² - 4(m+1)m < 0
m² - 2m + 1 - 4m² - 4m < 0
- 3m² - 6m + 1 < 0
3m² + 6m - 1 > 0
A equação acima representa uma parábola com cavidade para cima, portanto, por Bháskara
m >
Ou
m <
Logo o conjunto solução para m, tal que F(-x) não tenha raízes reais é dado por:
David122321:
Lembrando também que, com m = -1, a equação deixa de ser quadrática, sendo requisitado que m ≠ 1, portanto m = -1 pode ser considerado solução
Perguntas similares
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás