• Matéria: Matemática
  • Autor: lreali
  • Perguntado 8 anos atrás

Calcule a soma dos elementos da matriz C=[Cij]3x3 na qual Cij {i+2j,se i=j
Cij {3i+j,se i for diferente de j

Respostas

respondido por: adjemir
59
Vamos lá.

Lreali, estamos entendendo que a sua questão pede a soma de TODOS os elementos da matriz C(cij)3x3, que tem a seguinte lei de formação:

(cij) = i+2j, se i = j
(cij) = 3i+j, se "i" for diferente de "j".

Antes note que uma matriz C(cij)3x3 (três linhas e três colunas) tem a seguinte conformação:

.......|c₁₁....c₁₂.....c₁₃|
C = |c₂₁....c₂₂....c₂₃|
.......|c₃₁....c₃₂....c₃₃|

Agora vamos pra lei de formação de cada elemento, que é esta;

(cij) = i+2j, se i = j
(cij) = 3i+j, se "i" for diferente de "j".

Assim, teremos para cada elemento da matriz C:

c₁₁ = 1+2*1 = 1+2 = 3 ---- (pois i = j)
c₁₂ = 3*1+2 = 3+2 = 5 ---- (pois i ≠ j)
c₁₃ = 3*1+3 = 3+3 = 6 --- (pois i ≠ j)
c₂₁ = 3*2+1 = 6+1 = 7 --- (pois i ≠ j)
c₂₂ = 2+2*2 = 2+4 = 6 --- (pois i = j)
c₂₃ = 3*2+3 = 6+3 = 9 --- (pois i ≠ j)
c₃₁ = 3*3+1 = 9+1 = 10 --- (pois i ≠ j)
c₃₂ = 3*3+2 = 9+2 = 11 --- (pois i ≠ j)
c₃₃ = 3 + 2*3 = 3+6 = 9 --- (pois i = j).

Assim, a matriz C, conforme a lei de formação de cada um dos seus elementos, será esta:

.......|3......5......6|
C = |7.......6.....9| <--- Esta é a matriz C.
.......|10....11......9|

Finalmente, vamos somar os seus elementos. Assim, chamando essa soma de S, teremos;

S = 3+5+6 + 7+6+9 + 10+11+9
S = 14 + 22 + 30
S = 66 <--- Esta é a resposta. Esta é a soma pedida de todos os elementos da matriz C.

É isso aí.
Deu pra entender bem?

OK?
Adjemir.

lreali: Ok. Muito obrigado.
adjemir: Disponha, e bastante sucesso. Um abraço.
lreali: Para você também
Perguntas similares