considere um triangulo equilatero cuja medida do lado é 4cm. um segundo triangulo equilatero é construido unindo-se os pontos médios dos lados do triângulo original. novamente unindo-se os pontos medios dos lados do segundo triangulo, obtem-se um terceiro triangulo equilatero, e assim por diante infinitas vezes. a soma dos perimetros da infinidade de triangulos formados na sequencia, incluindo o triangulo original é igual a:
a) 16
b)18
c)20
d)24
e)32
Respostas
respondido por:
19
Desenhando um triangulo equilatero "em pé" voce liga os pontos médios dos lados diagonais e forma um triangulo no ponto médio do lado da base. Dessa forma você percebe que esse segundo triangulo tem lado valendo a metade do primeiro, o terceiro vale a metade do segundo, e assim por diante, formando uma progressão geométrica de infinitos termos.
Para somar os infinitos termos de uma P.G, existe uma fórmula:
Para ser possível calcular a soma dos infinitos termos, a razão q deve estar entre -1 e 0 , ou entre 0 e 1, pois assim teremos uma P.G decrescente tendendo a zero.
Ao analisar os triângulos, é possível perceber que cada triangulo formado, pela ligação dos pontos médios, vale metade do perímetro do anterior, ou seja, razão vale 1/2, então temos:
q = 1/2
0< q < 1 (pg decrescente)
a1 = perimetro do primeiro triangulo = 12cm
(12, 6 , 3, ...)
Alternativa D
Espero ter ajudado!!
Para somar os infinitos termos de uma P.G, existe uma fórmula:
Para ser possível calcular a soma dos infinitos termos, a razão q deve estar entre -1 e 0 , ou entre 0 e 1, pois assim teremos uma P.G decrescente tendendo a zero.
Ao analisar os triângulos, é possível perceber que cada triangulo formado, pela ligação dos pontos médios, vale metade do perímetro do anterior, ou seja, razão vale 1/2, então temos:
q = 1/2
0< q < 1 (pg decrescente)
a1 = perimetro do primeiro triangulo = 12cm
(12, 6 , 3, ...)
Alternativa D
Espero ter ajudado!!
gabrieladeandra:
muito obrigada, ajudou muito :)))
respondido por:
0
Resposta:
LETRA: D
Explicação passo a passo:
Bons estudos
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás