• Matéria: Matemática
  • Autor: juutteiixeiira
  • Perguntado 8 anos atrás

SOCORROOO. (FGV)- O termo independente de x do desenvolvimento de (x+1/x(elevado a 3) elevado a 12 é:

Anexos:

Respostas

respondido por: hcsmalves
142
(x + 1/x³)¹² = ( x + x⁻³)¹²

 T_{p + 1} =  \left(\begin{array}{ccc}n\\p\end{array}\right) a^{n-p}*b^{p}   \\  \\  T_{p+1}=  \left(\begin{array}{ccc}12\\p\end{array}\right)   x^{12-p} * (x^{-3} )^p \\  \\   T_{p+1} }=  \left(\begin{array}{ccc}12\\p\\\end{array}\right)   x^{12-p{} }* x^{-3p}   \\  \\  T_{p+1}=  \left(\begin{array}{ccc}12\\p\end{array}\right)   x^{12-4p}  \\  \\ \text{O termo sera independente, quando 12 - 4p=0} \\  \\ -4p=-12=\ \textgreater \ 4p=12=\ \textgreater \ p=3 \\  \\  T_{3+1}=  \left(\begin{array}{ccc}12\\3\\\end{array}\right) } x^0 \\  \\

  T_{4}=   \left(\begin{array}{ccc}12\\3\\\end{array}\right).1 \\  \\  T_{4}=   \frac{12!}{3!9!} = \frac{12.11.10.9!}{3.2.1.9!}= 2.11.10 = 220

hcsmalves: Agradecido pela melhor resposta.
Perguntas similares