• Matéria: Matemática
  • Autor: clarabia
  • Perguntado 9 anos atrás

Sejam r e s as raízes da equação de 2 grau 2x²-6x+3 =0 determine o valor de:
a) r+s
b)r.s
c)(r+3).(s+3)
d)1÷r+1÷s

Respostas

respondido por: MATHSPHIS
19
a)
a) \ r+s=\frac{-(-6)}{2}=3\\
\\
b) \ r.s=\frac{3}{2}\\
\\
c) (r+3)(s+3)=r s+3 r+3 s+9=rs+3(r+s)+9=\frac{3}{2}+3*3+9\\
\\=18+\frac{3}{2}=\frac{39}{2}\\
\\
d) \ \frac{1}{r}+\frac{1}{s}=\frac{r+s}{rs}=\frac{3}{\frac{3}{2}}=3*\frac{2}{3}=2
respondido por: Anônimo
11
2x^2-6x+3=0

r+s=\dfrac{-b}{a}

r+s=\dfrac{-(-6)}{2}

r+s=\dfrac{6}{2}

r+s=3

b) rs=\dfrac{c}{a}

rs=\dfrac{3}{2}

c) (r+3)(s+3)=rs+3r+3s+9=rs+3(r+s)+9

(r+3)(s+3)=\dfrac{3}{2}+3\cdot3+9

(r+3)(s+3)=\dfrac{3}{2}+9+9

(r+3)(s+3)=\dfrac{3+18+18}{2}

(r+3)(s+3)=\dfrac{39}{2}

d) \dfrac{1}{r}+\dfrac{1}{s}=\dfrac{r+s}{rs}

\dfrac{1}{r}+\dfrac{1}{s}=\dfrac{3}{\dfrac{3}{2}}

\dfrac{1}{r}+\dfrac{1}{s}=\dfrac{3}{1}\cdot\dfrac{2}{3}

\dfrac{1}{r}+\dfrac{1}{s}=2

Perguntas similares