• Matéria: Matemática
  • Autor: superaks
  • Perguntado 8 anos atrás

Encontre a fórmula fechada de somas e subtrações intercaladas dos n primeiros quadrados.


\mathsf{S_n=-1^2+2^2-3^2+4^2-5^2+...+(-1)^n\cdot n^2=\displaystyle\sum_{k=1}^n (-1)^k\cdot k^2}



__________________________________________

Por favor responder de forma detalhada. Respostas com brincadeiras serão eliminadas.

Respostas

respondido por: Niiya
2
Seja \mathsf{\Delta(c_{k})=c_{k+1}-c_{k}} o operador de diferença anterior de qualquer sequência real \mathsf{c_{k}}. Então, para quaisquer \mathsf{a_{k}}, \mathsf{b_{k}} sequências e \mathsf{x} constante:

\bullet\,\,\Delta(a_{k}+ b_{k})=(a_{k+1}+b_{k+1})-(a_{k}-b_{k})=(a_{k+1}-a_{k})+(b_{k+1}-b_{k})\\\\=\Delta(a_{k})+\Delta(b_{k})\\\\\\\bullet\,\,\Delta(x\cdot a_{k})=x\cdot a_{k+1}-x\cdot a_{k}=x\cdot(a_{k+1}-a_{k})=x\cdot\Delta(a_{k})\\\\\\\bullet\,\,\displaystyle\sum_{k=p}^{n}\Delta(a_{k})=\sum_{k=p}^{n}(a_{k+1}-a_{k})=\sum_{k=p}^{n}a_{k+1}-\sum_{k=p}^{n}a_{k}\\\\\\=\sum_{k=p+1}^{n+1}a_{k}-\sum_{k=p}^{n}a_{k}=a_{n+1}+\sum_{k=p+1}^{n}a_{k}-a_{p}-\sum_{k=p+1}^{n}a_{k}=a_{n+1}-a_{p}
___________________________________

Vamos encontrar \mathsf{\Delta(a_{k}),\,\,a_{k}=(-1)^{k}\cdot k^{2}}:

\mathsf{\Delta(a_{k})=a_{k+1}-a_{k}}\\\\\mathsf{\Delta(a_{k})=(-1)^{k+1}\cdot(k+1)^{2}-(-1)^{k}\cdot k^{2}}\\\\\mathsf{\Delta(a_{k})=(-1)^{k+1}(k^{2}+2k+1)-(-1)^{k}\cdot k^{2}}\\\\\mathsf{\Delta(a_{k})=(-1)^{k+1}\cdot k^{2}+2(-1)^{k+1}\cdot k+(-1)^{k+1}-(-1)^{k}\cdot k^{2}}\\\\\mathsf{\Delta(a_{k})=(-1)(-1)^{k}\cdot k^{2}+2(-1)(-1)^{k}\cdot k-(-1)^{k}\cdot k^{2}+(-1)(-1)^{k}}\\\\\mathsf{\Delta(a_{k})=-(-1)^{k}\cdot k^{2}-(-1)^{k}\cdot k^{2}-2(-1)^{k}\cdot k-(-1)^{k}}

\mathsf{\Delta(a_{k})=-2(-1)^{k}\cdot k^{2}-2(-1)^{k}\cdot k-(-1)^{k}}

Isolando \mathsf{(-1)^{k}\cdot k^{2}}:

\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2(-1)^{k}\cdot k+(-1)^{k}\bigg]}

Agora vamos achar \mathsf{\Delta(b_{k}),\,\,b_{k}=(-1)^{k}\cdot k}:

\mathsf{\Delta(b_{k})=b_{k+1}-b_{k}}\\\\\mathsf{\Delta(b_{k})=(-1)^{k+1}\cdot(k+1)-(-1)^{k}\cdot k}\\\\\mathsf{\Delta(b_{k})=(-1)^{k+1}\cdot k+(-1)^{k+1}-(-1)^{k}\cdot k}\\\\\mathsf{\Delta(b_{k})=(-1)(-1)^{k}\cdot k-(-1)^{k}\cdot k+(-1)(-1)^{k}}\\\\\mathsf{\Delta(b_{k})=-(-1)^{k}\cdot k-(-1)^{k}\cdot k-(-1)^{k}}\\\\\mathsf{\Delta(b_{k})=-2(-1)^{k}\cdot k-(-1)^{k}}\\\\\Longrightarrow\,\,\mathsf{(-1)^{k}\cdot k=-\dfrac{1}{2}\bigg[\Delta(b_{k})+(-1)^{k}\bigg]}

Então:

\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2(-1)^{k}\cdot k+(-1)^{k}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})+2\cdot(-\frac{1}{2})\big[\Delta(b_{k})+(-1)^{k}\big]+(-1)^{k}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\bigg[\Delta(a_{k})-\Delta(b_{k})-(-1)^{k}+(-1)^{k}}\bigg]}\\\\\\\mathsf{(-1)^{k}\cdot k^{2}=-\dfrac{1}{2}\Delta(a_{k}-b_{k})}

Logo,

\displaystyle\mathsf{\sum_{k=1}^{n}(-1)^{k}\cdot k^{2}=}\\\\\\\mathsf{\sum_{k=1}^{n}-\dfrac{1}{2}\Delta(a_{k}-b_{k})=}\\\\\\\mathsf{-\dfrac{1}{2}\sum_{k=1}^{n}\Delta(a_{k}-b_{k})=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[\big(a_{n+1}-b_{n+1}\big)-\big(a_{1}-b_{1}\big)\bigg]=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[(-1)^{n+1}(n+1)^{2}-(-1)^{n+1}(n+1)-(-1)^{1}\cdot1^{2}+(-1)^{1}\cdot1\bigg]=}\\\\\\\mathsf{-\dfrac{1}{2}\bigg[(-1)^{n+1}(n+1)^{2}-(-1)^{n+1}(n+1)\bigg]=}

\mathsf{-\dfrac{1}{2}(-1)^{n+1}(n+1)\big[(n+1)-1\big]=}\\\\\\\mathsf{=-\dfrac{1}{2}(-1)(-1)^{n}(n+1)\cdot n}\\\\\\\mathsf{=(-1)^{n}\cdot\dfrac{n(n+1)}{2}}

Concluímos, portanto, que

\boxed{\boxed{\mathsf{\sum_{k=1}^{n}(-1)^{k}\cdot k^{2}=(-1)^{n}\cdot\dfrac{n(n+1)}{2}}}}

superaks: Que aula!!! Mesmo para quem é leigo ainda em somas telescópicas, vai conseguir entender com essa resposta super detalhada. Obrigado Niiya!! =)
respondido por: Heterotopp
0

Resposta:

Explicação passo a passo:

Ficou show sou

Perguntas similares