• Matéria: Matemática
  • Autor: Krikor
  • Perguntado 8 anos atrás


Resolva o sistema de equações:

\left\{\begin{matrix}
\mathtt{2^x\cdot 4^y=\dfrac{3}{4}}\quad \qquad\\ 
\\ 
\mathtt{y^3-\dfrac{x\cdot y^2}{2}=0}
\end{matrix}\right.

Obs: respostas sem sentido ou brincadeiras serão eliminadas

Respostas

respondido por: Lukyo
5
Resolver o sistema de equações.

\left\{\!\begin{array}{lc}\mathsf{2^x\cdot 4^y=\dfrac{3}{4}}&\quad\mathsf{(i)}\\\\ \mathsf{y^3-\dfrac{x\cdot y^2}{2}=0}&\quad\mathsf{(ii)}\end{array}\right.

Da equação (i), tiramos

\mathsf{2^x\cdot 4^y=\dfrac{3}{4}}\\\\\\ \mathsf{2^x\cdot (2^2)^y=\dfrac{3}{4}}\\\\\\ \mathsf{2^x\cdot 2^{2y}=\dfrac{3}{4}}\\\\\\ \mathsf{2^{x+2y}=\dfrac{3}{4}}

Logo,

\mathsf{x+2y=\ell og_2\left(\dfrac{3}{4}\right)}\\\\\\ \mathsf{x=\ell og_2\left(\dfrac{3}{4}\right)-2y}\\\\\\ \mathsf{x=a-2y\qquad\quad (iii)}

sendo \mathsf{a=\ell og_2\,\dfrac{3}{4}.}

Rearrumando a equação (ii), temos

\mathsf{y^3-\dfrac{xy^2}{2}=0}\\\\\\ \mathsf{2y^3-xy^2=0}\\\\ \mathsf{y^2 \cdot (2y-x)=0}

Substituindo (iii) acima,

\mathsf{y^2 \cdot \big[2y-(a-2y)\big]=0}\\\\ \mathsf{y^2 \cdot (2y-a+2y)=0}\\\\ \mathsf{y^2 \cdot (4y-a)=0}\\\\ \mathsf{y^2=0~~~ou~~~4y-a=0}\\\\ \mathsf{y=0~~~ou~~~y=\dfrac{a}{4}}

=====

• Para y = 0, encontramos

\mathsf{x=a-2y}\\\\ \mathsf{x=a-2\cdot 0}\\\\ \mathsf{x=a} \\\\ \mathsf{x=\ell og_2\,\dfrac{3}{4}}

• Para \mathsf{y=\dfrac{a}{4}=\dfrac{1}{4}\,\ell og_2\,\dfrac{3}{4},} encontramos

\mathsf{x=a-2y}\\\\ \mathsf{x=a-2\cdot \dfrac{a}{4}}\\\\\\ \mathsf{x=a-\dfrac{a}{2}}\\\\\\ \mathsf{x=\dfrac{a}{2}}\\\\\\ \mathsf{x=\dfrac{1}{2}\,\ell og_2\,\dfrac{3}{4}}

Conjunto solução: \mathsf{S=\left\{\left(\ell og_2\,\dfrac{3}{4},\,0\right),\, \left(\dfrac{1}{2}\,\ell og_2\,\dfrac{3}{4},\, \dfrac{1}{4}\,\ell og_2\,\dfrac{3}{4} \right) \right\}}

Bons estudos! :-)

Krikor: Excelente! Muito obrigado, Lukyo! :)
Lukyo: Por nada :)
Perguntas similares