• Matéria: Matemática
  • Autor: ianne100
  • Perguntado 8 anos atrás

resolva a seguinte equação.

Anexos:

Respostas

respondido por: adjemir
1
Vamos lá.

Veja, Ianne, que a resposta é simples.
Pede-se para desenvolver a seguinte expressão, que vamos chamá-la de um certo "y", apenas para deixá-la igualada a alguma coisa:

y = (n+4)!/[(n+2)!+(n+3)!]

Veja: vamos desenvolver (n+4)! e (n+3)! até (n+2)!. Então, fazendo isso, ficaremos da seguinte forma:

y = [(n+4)*(n+3)*(n+2)!]/[(n+2)!+(n+3)*(n+2)!] ---- no denominador, vamos colocar (n+2)! em evidência. Com isso, ficaremos assim:

y = [(n+4)*(n+3)*(n+2)!] / [(n+2)!*(1 + (n+3)] ---- agora simplificaremos (n+2)! do numerador com (n+2)! do denominador e, com isso, ficaremos apenas com:

y = [(n+4)*(n+3)]/[1 + (n+3)] ----- retirando-se os parênteses do denominador, iremos ficar da seguinte forma:

y = [(n+4)*(n+3)]/[(1 + n+3)] ----- reduzindo os termos semelhantes no denominador, iremos ficar do seguinte modo:

y = [(n+4)*(n+3)]/[n+4) ------ simplificando-se (n+4) do numerador com (n+4) do denominador, iremos ficar apenas com:

y = (n+3) ---- ou, se quiser retirar os parênteses, ficaremos com:

y = n + 3 <--- Pronto. Esta é a expressão que ficou, após fazermos todas as simplificações possíveis.

Finalmente, se você quiser encontrar as raízes, então bastará fazer y = 0. Assim, ficaria:

n + 3 = 0
n = - 3 <--- Esta seria a raiz da expressão após totalmente simplificada, mas isso só se você quisesse saber qual a raiz da expressão que restou após fazermos todas as simplificações.

É isso aí.
Deu pra entender bem?

OK?
Adjemir.

ianne100: obrigadao cara me ajudou mt
adjemir: Disponha, Ianne, e bastante sucesso. Um cordial abraço.
adjemir: Obrigado pela melhor resposta. Continue a dispor e um abraço.
Perguntas similares