• Matéria: Matemática
  • Autor: SraAngelaLeal
  • Perguntado 8 anos atrás

Considere as seguintes funções do 1° grau:
y1 (x) = 2x-12
y2 (x) = 10-3x
y3 (x) = x-8
y4 (x) = 3x

A) y4 (x) é função constante
B) y3(x) é linear e passar pela origem
C) O coeficiente linear de y3 (x) é maior que o coeficente linear de y1 (x)
D) O zerode fução y1 (x) é maior que o zeroda função y3 (x)
E) y1 (x) e y2 (x) são representadas por retas decrescentes

Respostas

respondido por: felipessouza01
1
A) Errado.
Comentário: uma função constante caracteriza-se pela ausência do termo variável na sua formação.

B) Errado.
Comentário: a função é linear, pois o expoente do termo variável ("x") é 1. Analogamente, se fosse 2, seria uma função quadrática. No entanto, a reta não passa pela origem, visto que seu coeficiente "b" (-8) é onde a reta intercepta o eixo y.

C) Correto.
Comentário: o coeficiente linear de  y3(x) é -8; o de y1(x) é -12.

D) Errado.
Comentário: o zero da função de y1(x) é 6, enquanto que o de y3(x) é 8.

E) Errado.
Comentário: y1(x) é crescente, pois seu coeficiente "a" é positivo (+1). Por outro lado, y2(x) é decrescente, uma vez que seu coeficiente "a" é negativo (-3).


Perguntas similares