• Matéria: Matemática
  • Autor: luasousarocha
  • Perguntado 9 anos atrás

Dada a progressão geométrica, calcule o termo pedido:

Anexos:

Respostas

respondido por: azevedoarthur
1
a) 2 .  3^{9} = 39366
b) -3 .  2^{12} = -12288
c) 4 .  (-2)^{9} = -2048
d) 12 .  2^{-8}
e) -3 .  5^{5} = -9375
respondido por: Anônimo
5
a) (2,6,18,\dots)~~~~~~~~a_{10}=?

r=\dfrac{6}{2}~~\Rightarrow~~r=3

a_n=a_1\cdot q^{n-1}~~~\Rightarrow~~a_{10}=a_1\cdot q^{9}

a_{10}=2\cdot3^{9}~~\Rightarrow~~a_{10}=2\cdot19.683~~\Rightarrow~~a_{10}=39~366


b) (-3,-6,-12,\dots)~~~~~~~~a_{13}=?

r=\dfrac{-6}{-3}~~\Rightarrow~~r=2

a_{13}=a_1\cdot r^{12}~~\Rightarrow~~a_{13}=(-3)\cdot2^{12}

a_{13}=(-3)\cdot4.096~~\Rightarrow~~a_{13}=-12.288


c) (4,-8,16,\dots)~~~~~~a_{10}=?

r=\dfrac{-8}{4}~~\Rightarrow~~r=-2

a_{10}=a_1\cdot q^{9}~~\Rightarrow~~a_{10}=4\cdot(-2)^{9}

a_{10}=4\cdot-512~~\Rightarrow~~a_{10}=-2.048


d) (12,6,3\dots)~~~~~~a_9=?

r=\dfrac{6}{12}~~\Rightarrow~~r=\dfrac{1}{2}

a_9=a_1\cdot q^{8}~~\Rightarrow~~a_9=12\cdot\left(\dfrac{1}{2}\right)^{8}


a_9=12\cdot\dfrac{1}{256}~~~\Rightarrow~~a_9=\dfrac{12}{256}~~\Rightarrow~~a_9=\dfrac{3}{64}


e) (-3,-15,-75,\dots)~~~~~~a_6=?

r=\dfrac{-15}{-3}~~~\Rightarrow~~r=5

a_6=a_1\cdot q^{5}~~\Rightarrow~~a_6=(-3)\cdot5^5~~\Rightarrow~~a_6=(-3)\cdot3.125

a_6=-9.375
Perguntas similares