• Matéria: Matemática
  • Autor: brunoea
  • Perguntado 8 anos atrás

Resolva a inequação
 log_{ \frac{1}{3} }(x - 1)  \geqslant  log_{3}(4)

Respostas

respondido por: FdASO
1
log_{\frac{1}{3}}(x-1) \geqslant log_34\\\\
\frac{log_3(x-1)}{log_3 \frac{1}{3}} \geqslant log_34\\\\
\frac{log_3(x-1)}{-1} \geqslant log_34\\\\
-log_3(x-1)} \geqslant log_34\\\\
log_3(x-1) \leqslant -log_34\\\\
log_3(x-1) \leqslant log_34^{-1}\\\\
log_3(x-1) \leqslant log_3 \frac{1}{4}\\\\
(x-1) \leqslant \frac{1}{4}\\\\
x \leqslant \frac{1}{4}+1\\\\
x \leqslant \frac{5}{4}\\\\

Pela condição de existência:

(x-1)\ \textgreater \ 0\\\\
x\ \textgreater \ 1\\\\
Assim:\\\\
x\ \textgreater \ 1 \ e \ x \leqslant \frac{5}{4}\\\\
ou \\\\
1\ \textless \ x \leqslant \frac{5}{4}

Perguntas similares