• Matéria: Matemática
  • Autor: brunoea
  • Perguntado 8 anos atrás

(Faap-SP) Resolva a equação
 log_{x}(2)  \times  log_{x \div 16}(2)  =  log_{x \div 64}(2)

Respostas

respondido por: FdASO
19
log_x2 \ . \ log_{\frac{x}{16}}2=log_{\frac{x}{64}}2\\\\
\frac{log_22}{log_2x}.\frac{log_22}{log_2\frac{x}{16}}=\frac{log_22}{log_2\frac{x}{64}}\\\\
\frac{1}{log_2x}.\frac{1}{log_2\frac{x}{16}}=\frac{1}{log_2\frac{x}{64}}\\\\
log_2\frac{x}{64}=(log_2x).(log_2\frac{x}{16}})\\\\
log_2x - log_264=(log_2x).(log_2x - log_216)\\\\
log_2x - 6=(log_2x).(log_2x - 4)\\\\
log_2x - 6=log^2_2x - 4log_2x\\\\
Para \ facilitar: \ log_2x=y\\\\
y-6=y^2-4y\\
y^2-5y+6=0\\
\Delta=(-5)^2-4.1.6=25-24=1\\\\
y=\frac{-(-5)\pm\sqrt{1}}{2}\\\\
y=\frac{5\pm1}{2}\\\\
y_1=\frac{6}{2}=3 \ e \ y_2=\frac{4}{2}=2\\\\
Agora \ temos:\\\\
log_2x=3\\
x=2^3\\
x=8\\\\
log_2x=2\\
x=2^2\\
x=4
Perguntas similares