• Matéria: Matemática
  • Autor: jn270106
  • Perguntado 8 anos atrás

Ao efetuar a divisão do polinômio p(x) = 3(x ao cubo) + 2(x ao quadrado) - mx + n pelo trinômio (x ao quadrado) - 2x +1, verifica-se que o resto é zero, ou seja, trata-se de uma divisão exata. Sendo assim, quanto vale m-n?

A) 11
B) 0
C) 5
D) -5
E) -3

Respostas

respondido por: Arnaldo000
0
3x³+2x²-mx+n | x²- 2x+1
..............................|_________
-3x³+6x²-3x........3x + 8
_________
0+8x² - 3x-mx+n
....-8x²+16x
_________
......0+13x-mx+n

-mx +13x =0

-mx = - 13x
m= 13
e
n=0

Logo

m - n = 13

Espero ter ajudado

jn270106: Por que o valor de n é igual a 0?
jn270106: Por que não multiplicou o 8 do quociente por 1 do divisor, quando da divisão de 8x^2 +16x por x^2-2x+1?
Arnaldo000: n é zero porq não tem uma constante diferente de zero.
Arnaldo000: Desculpa irmão n=-8
Perguntas similares