• Matéria: Matemática
  • Autor: LISDJKFIOS
  • Perguntado 8 anos atrás

Junte-se a um colega e estabeleçam três matrizes quadradas, A, B e C, de ordem 2, e verifiquem numericamente a validade das propriedades:

A) (A.B).C = A . (B.C)

B) (A+B).C = A . C+B.C

C) A . L2 = L2 . A = A

D) (K . A) . B = K . (A.B), com k e R

E) (A . B)T = BT . AT

Respostas

respondido por: silvageeh
86
Olá

Vamos considerar as matrizes A =   \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] , B =  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] e C =  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right]

a) (A.B).C = A.(B.C)
(A.B).C =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] =  \left[\begin{array}{cc}1&0\\3&0\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] =  \left[\begin{array}{cc}0&2\\0&6\\\end{array}\right]

A.(B.C) =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\0&0\\\end{array}\right] =  \left[\begin{array}{cc}0&2\\0&6\\\end{array}\right]

Logo, (A.B).C = A.(B.C)

b) (A+B).C = AC + BC

(A+B).C =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] +  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] =  \left[\begin{array}{cc}2&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] =  \left[\begin{array}{cc}2&6\\4&10\\\end{array}\right]

A.C + B.C =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] +  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] *  \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] =  \left[\begin{array}{cc}2&4\\4&10\\\end{array}\right] +  \left[\begin{array}{cc}0&2\\0&0\\\end{array}\right] =  \left[\begin{array}{cc}2&6\\4&10\\\end{array}\right]

Logo. (A + B).C = A.C + B.C

c) A.L2 = L2.A = A

A.L2 =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}1&0\\0&1\\\end{array}\right] =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right]

L2.A =  \left[\begin{array}{cc}1&0\\0&1\\\end{array}\right] *  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] =  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right]

Logo, A.L2 = L2.A = A

d) (K.A).B = K(A.B) 

(K.A).B = K *  \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] *  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] =  \left[\begin{array}{cc}K&2K\\3K&4K\\\end{array}\right] *  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] =  \left[\begin{array}{cc}K&0\\3K&0\\\end{array}\right]

K(A.B) = K *  \left[\begin{array}{cc}1&0\\3&0\\\end{array}\right] =  \left[\begin{array}{cc}K&0\\3K&0\\\end{array}\right]

Logo, (K.A).B = K.(A.B)

e) ( A.B)^{T} =  B^{T} .  A^{T}

( A.B)^{T} =  \left[\begin{array}{cc}1&3\\0&0\\\end{array}\right]  

 B^{T} . A^{T}=  \left[\begin{array}{cc}1&0\\0&0\\\end{array}\right] *  \left[\begin{array}{cc}1&3\\2&4\\\end{array}\right] =  \left[\begin{array}{cc}1&3\\0&0\\\end{array}\right] .

Logo ( A.B)^{T} = B^{T} . A^{T}

Obs: atenção nos parênteses

LyviaS2: Qualquer número multiplicado por 0 não é 0?
Perguntas similares