obtenha quando exister os zeros das funçoes
A)g(x)= x2+3x+2
B)g(x)= 2x2 + x+1
C)g(x)= - x2+6x-1
D)g(x)= 5x2+3x-7
Respostas
respondido por:
3
A. 0 = x²+3x+2
(x+2)(x+1) = 0
x+2=0 e x+1 =0
x=-2 e x=-1
{-2 e -1}
B². 0= 2x²+x+1
x²+1/2x+1/2 = 0
x²+1/2x = -1/2
x²+1/2x+(1/4)² = -1/2+(1/4)²
(x+1/4)² = -1/2+1/16
= -8+1 / 16
= -7/16
(x+1/4) = √-7/16 e x+1/4 = - √-7/16
= 1/4 √-7 e = -1/4 √-7
= 1/4 7i e = -1/4 7i
x = -1/4+ 7i/4 e x = -1/4 - 7i/4
= -1+7i / 4 e = -1-7i / 4
{-1+7i / 4 e -1-7i / 4}
c. 0 = -x²+6x-1
x²-6x+1 = 0
x²-6x = -1
x²-6x+3² = -1+3²
(x-3)² = 8
x-3 = √8 e x-3 = -√8
x= 3+√8 e x= 3-√8
= 3+2√2 e x= 3-2√2
{3+2√2 e 3-2√2}
d. 0 =5x²+3x-7
x²+3/5 x - 7/5 = 0
x²+3/5x = 7/5
x²+3/5x + (3/10)² = 7/5+(3/10)²
(x+3/10)² = 7/5+9/100
= 140+9/100
= 149/100
x+3/10 = √149/100 e x+3/10 = -√149/100
x = -3/10+ 1/10 √149 e x = -3/10- 1/10 √149
= -3+√149 / 10 e = -3-√149 / 10
{-3+√149 / 10 e -3-√149 / 10}
(x+2)(x+1) = 0
x+2=0 e x+1 =0
x=-2 e x=-1
{-2 e -1}
B². 0= 2x²+x+1
x²+1/2x+1/2 = 0
x²+1/2x = -1/2
x²+1/2x+(1/4)² = -1/2+(1/4)²
(x+1/4)² = -1/2+1/16
= -8+1 / 16
= -7/16
(x+1/4) = √-7/16 e x+1/4 = - √-7/16
= 1/4 √-7 e = -1/4 √-7
= 1/4 7i e = -1/4 7i
x = -1/4+ 7i/4 e x = -1/4 - 7i/4
= -1+7i / 4 e = -1-7i / 4
{-1+7i / 4 e -1-7i / 4}
c. 0 = -x²+6x-1
x²-6x+1 = 0
x²-6x = -1
x²-6x+3² = -1+3²
(x-3)² = 8
x-3 = √8 e x-3 = -√8
x= 3+√8 e x= 3-√8
= 3+2√2 e x= 3-2√2
{3+2√2 e 3-2√2}
d. 0 =5x²+3x-7
x²+3/5 x - 7/5 = 0
x²+3/5x = 7/5
x²+3/5x + (3/10)² = 7/5+(3/10)²
(x+3/10)² = 7/5+9/100
= 140+9/100
= 149/100
x+3/10 = √149/100 e x+3/10 = -√149/100
x = -3/10+ 1/10 √149 e x = -3/10- 1/10 √149
= -3+√149 / 10 e = -3-√149 / 10
{-3+√149 / 10 e -3-√149 / 10}
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás