• Matéria: Matemática
  • Autor: limajessica0024
  • Perguntado 8 anos atrás

determine i cojunto-solução das seguintes equação do 2 grau no conjunto ir
 {x}^{2}  - 7x + 10 \\  \\ (x - 5) {}^{2}  = 25 - 9x
 {x}^{2}  -  \frac{4x}{5}  =  \frac{1}{5}
 \frac{x {}^{2} }{2}  -  \frac{x + 12}{ 3}  = 2x

Respostas

respondido por: FdASO
1
x^2-7x+10=0\\\\
\Delta=(-7)^2-4.1.10\\
\Delta=49-10=9\\\\
x=\frac{-(-7)\pm\sqrt{9}}{2}=\frac{7\pm3}{2}\\\\
x_1=\frac{7+3}{2}=\frac{10}{2}=5\\\\
x_2=\frac{7-3}{2}=\frac{4}{2}=2


(x-5)^2=25-9x\\\\
x^2-10x+25=25-9x\\
x^2-10x+25-25+9x=0\\
x^2-x=0\\
x(x-1)=0\\
x=0\\
x-1=0\\
x=1

x^2-\frac{4x}{5}=\frac{1}{5}\\\\
5x^2-4x=1\\
5x^2-4x-1=0\\
\Delta=(-4)^2-4.5.(-1)\\
\Delta=16+20=36\\\\
x=\frac{-(-4)\pm\sqrt{36}}{2.5}=\frac{4\pm6}{10}\\\\
x_1=\frac{4+6}{10}=\frac{10}{10}=1\\\\
x_2=\frac{4-6}{10}=\frac{-2}{10}=\frac{-1}{5}


\frac{x^2}{2}-\frac{x +12}{3}=2x\\\\
\frac{3x^2-(2).(x +12)=6.2x}{6}\\\\
3x^2-(2).(x +12)=6.2x\\
3x^2-2x -24=12x\\
3x^2-14x -24=0\\
\Delta=(-14)^2-4.3.(-24)\\
\Delta=196+288=484\\\\
x=\frac{-(-14)\pm\sqrt{484}}{2.3}=\frac{14\pm22}{6}\\\\
x_1=\frac{14+22}{6}=\frac{36}{6}=6\\\\
x_2=\frac{14-22}{6}=\frac{-8}{6}=\frac{-4}{3}\\\\
Perguntas similares