Respostas
respondido por:
2
Primeiro, tiramos o MMC entre as duas frações, que é:
n!·(n+1)!
Aplicando:
![\frac{1^{\times (n+1)!}}{n!_{\times (n+1)!}}-\frac{n^{\times n!}}{(n+1)!_{\times n!}}
\\\\
\frac{(n+1)!-n \cdot n!}{n! \cdot (n+1)!}
\\\\
\frac{(n+1) \cdot n!-n \cdot n!}{n! \cdot (n+1)!}
\\\\
\frac{\not n! \cdot [(n+1)-n)}{\not n! \cdot (n+1)!}
\\\\
\boxed{\boxed{\frac{1}{(n+1)!}}} \frac{1^{\times (n+1)!}}{n!_{\times (n+1)!}}-\frac{n^{\times n!}}{(n+1)!_{\times n!}}
\\\\
\frac{(n+1)!-n \cdot n!}{n! \cdot (n+1)!}
\\\\
\frac{(n+1) \cdot n!-n \cdot n!}{n! \cdot (n+1)!}
\\\\
\frac{\not n! \cdot [(n+1)-n)}{\not n! \cdot (n+1)!}
\\\\
\boxed{\boxed{\frac{1}{(n+1)!}}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%5E%7B%5Ctimes+%28n%2B1%29%21%7D%7D%7Bn%21_%7B%5Ctimes+%28n%2B1%29%21%7D%7D-%5Cfrac%7Bn%5E%7B%5Ctimes+n%21%7D%7D%7B%28n%2B1%29%21_%7B%5Ctimes+n%21%7D%7D%0A%5C%5C%5C%5C%0A%5Cfrac%7B%28n%2B1%29%21-n+%5Ccdot+n%21%7D%7Bn%21+%5Ccdot+%28n%2B1%29%21%7D%0A%5C%5C%5C%5C%0A%5Cfrac%7B%28n%2B1%29+%5Ccdot+n%21-n+%5Ccdot+n%21%7D%7Bn%21+%5Ccdot+%28n%2B1%29%21%7D%0A%5C%5C%5C%5C%0A%5Cfrac%7B%5Cnot+n%21+%5Ccdot+%5B%28n%2B1%29-n%29%7D%7B%5Cnot+n%21+%5Ccdot+%28n%2B1%29%21%7D%0A%5C%5C%5C%5C%0A%5Cboxed%7B%5Cboxed%7B%5Cfrac%7B1%7D%7B%28n%2B1%29%21%7D%7D%7D)
n!·(n+1)!
Aplicando:
Anônimo:
se não entender alguma etapa me diga
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
10 anos atrás