Considerando o paralelepípedo retângulo com 12 cm de comprimento, 7 cm de largura e 5 cm de altura, analise as afirmativas seguintes e assinale a alternativa correta.
Alternativas
Alternativa 1:
A área total deste paralelepípedo retângulo é de 358 cm2.
Alternativa 2:
A área da base deste paralelepípedo retângulo é de 60 cm2.
Alternativa 3:
O volume deste paralelepípedo retângulo é de 400 cm3.
Alternativa 4:
A área lateral deste paralelepípedo retângulo é de 200 cm2.
Alternativa 5:
A diagonal deste paralelepípedo mede 100 cm.
Respostas
respondido por:
7
a = 12
b = 5
c = 7
===
Alternativa 1)
Área total:
At = 2 .(ab + ac + bc)
At = 2 . (12.5 + 12.7 + 5.7)
At = 2 .(60 + 84 + 35)
At = 2 . (179)
At = 358 cm²
===
Alternativa 2)
Área da base
Ab = comprimento . altura
Ab = a . c
Ab = 12 . 5
Ab = 60 cm²
===
Alternativa 3)
Volume = comprimento. largura. altura
V = a . b . c
V = 12 . 7 . 5
V = 420 cm³
===
Alternativa 4)
Area lateral:
AL = 2 (ac + bc)
AL = 2 .(12.5 + 5.7)
Al = 2.(60 + 35)
Al = 2 . 95
Al = 190 cm²
===
Alternativa 5)
D = √(a² + b² + c²)
D = √(12² + 5² + 7²)
D = √(144 + 25 + 49)
D = √218 cm
====
Alternativas corretas:
Alternativa 1)
Alternativa 2)
b = 5
c = 7
===
Alternativa 1)
Área total:
At = 2 .(ab + ac + bc)
At = 2 . (12.5 + 12.7 + 5.7)
At = 2 .(60 + 84 + 35)
At = 2 . (179)
At = 358 cm²
===
Alternativa 2)
Área da base
Ab = comprimento . altura
Ab = a . c
Ab = 12 . 5
Ab = 60 cm²
===
Alternativa 3)
Volume = comprimento. largura. altura
V = a . b . c
V = 12 . 7 . 5
V = 420 cm³
===
Alternativa 4)
Area lateral:
AL = 2 (ac + bc)
AL = 2 .(12.5 + 5.7)
Al = 2.(60 + 35)
Al = 2 . 95
Al = 190 cm²
===
Alternativa 5)
D = √(a² + b² + c²)
D = √(12² + 5² + 7²)
D = √(144 + 25 + 49)
D = √218 cm
====
Alternativas corretas:
Alternativa 1)
Alternativa 2)
gomesmariano253:
obrigado :)
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás