• Matéria: Matemática
  • Autor: LayneSimoes
  • Perguntado 8 anos atrás

me ajudem por favor nessas questoes

Anexos:

Anônimo: :)

Respostas

respondido por: Helvio
2
3) 

\dfrac{2^{21}}{2} + \dfrac{4^{12}}{2}\\ \\ \\2^{21} . 2^{-1}  + \dfrac{2^{24}}{2}\\ \\ \\
2^{21}\  .\  2^{-1}  +  2^{24}\  . \ 2} ^{-1}\\ \\ \\2^{20} + 2^{23}


Resposta letra a) 2²⁰ + 2²³


===

\dfrac{0,5 . 10^3 - 2^{-1} . \sqrt[3]{1000}}{(1.31111...)^{-1}} \\  \\  \\ 
\dfrac{\dfrac{5}{10} . 1000 - \dfrac{1}{2} . 10}{(\dfrac{118}{90})^{-1}} \\  \\  \\ \dfrac{\dfrac{1000}{2} - \dfrac{10}{2}}{(\dfrac{59}{45})^{-1}}  \\  \\  \\ \dfrac{\dfrac{1000}{2} - \dfrac{10}{2}}{\dfrac{45}{59}}}  \\  \\  \\ \dfrac{500 - 5}{\dfrac{45}{59}}}  \\  \\  \\ 495 - \dfrac{59}{45}} \\  \\  \\ \dfrac{59 . 495}{59}} \\  \\  \\  \dfrac{29205}{45}} \\  \\   \\=\ \textgreater \  649



Resposta letra d) 649


===

5) 

\dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{2} + 1} + \dfrac{1}{\sqrt{2} - 1} \\ \\ \\ 
\dfrac{1 . (\sqrt{2})}{(\sqrt{2}).(\sqrt{2})} + \dfrac{1 .(\sqrt{2} + 1)}{(\sqrt{2} + 1) . (\sqrt{2} + 1)} + \dfrac{1,(\sqrt{2} - 1)}{(\sqrt{2} - 1) .(\sqrt{2} - 1)} \\ \\ \\

\dfrac{\sqrt{2}}{(\sqrt{2})^2} + \dfrac{1 . \sqrt{2} + 1}{(\sqrt{2} + 1)^2)} + \dfrac{1,(\sqrt{2} - 1)}{(\sqrt{2} - 1)^2}\\ \\ \\
\dfrac{\sqrt{2}}{(\sqrt{2})^2} - 1 + \sqrt{2}  + 1 +\sqrt{2} \\ \\ \\


\dfrac{\sqrt{2}}{(\sqrt{2})^2}  + \sqrt{2}\\ \\ \\\dfrac{5\sqrt{2}}{2}



Resposta letra c) \dfrac{5\sqrt{2}}{2}

LayneSimoes: muiiito obrigado
Helvio: Obrigado.
Perguntas similares