• Matéria: Matemática
  • Autor: larissamendesrv6617
  • Perguntado 7 anos atrás

Questão n° 25A equação da reta que corta o eixo das ordenadas no ponto P = (0, - 6) e que tangencia a circunferência x2 + y2 = 4 no quarto quadrante éa)y= -2V2X+ 6b)y = 2yflx - 6c)y= 2V2X+ 6d)y = 4x - 6e)y = - 4x + 6

Anexos:

Respostas

respondido por: andre19santos
15

A reta tangente tem coeficiente angular maior que zero, pois a reta corta o eixo das ordenadas em -6 e tangencia a circunferência em alguma ordenada entre -2 e 0.


Como ela passa pelo ponto (0, -6), sua equação pode ser escrita como:

y - (-6) = m(x - 0)

mx - y - 6 = 0


A circunferência tem centro em (0,0) e raio igual a 2, portanto a reta tangente distância de 2 unidades do ponto (0,0), utilizando a equação da distância entre ponto e reta:

d(p,r) = (| ax0 + by0 + c |)/√(a²+b²)


onde a, b e c são os coeficientes da reta e valem m, -1 e -6, respectivamente, e x0 e y0 são as coordenadas dos pontos, então x0 = y0 = 0:

2 = (| m*0 + -1*0 + -6 |)/√(m²+(-1)²)

2 = 6/√(m²+1)

√(m²+1) = 3

m² + 1 = 9

m² = 8

m = 2√2 (lembrando que m > 0)


Portanto, a equação da reta é:

2√2x - y - 6 = 0

y = 2√2x - 6


Resposta: letra B

Perguntas similares