• Matéria: Matemática
  • Autor: dudinho1
  • Perguntado 8 anos atrás

Para revestir externamente chapéus em forma de cones com 12 cm de altura e diâmetro da base medindo 10 cm, serão utilizados cortes retangulares de tecido, cujas medidas são 67 cm por 50 cm. Admita que todo o tecido de cada corte poderá ser aproveitado. Determine o número mínimo dos referidos cortes necessários para forrar 50 chapéus.

Respostas

respondido por: numero20
42

Para resolver essa questão, precisamos determinar a área de superfície lateral do cone, onde utilizamos a seguinte equação:

Al = π × R × g

onde R é o raio da base do cone e g é a geratriz. Para determinar o valor da geratriz, utilizamos o Teorema de Pitágoras, formando um triângulo retângulo com os catetos raio e altura e hipotenusa igual a geratriz.

g² = 12² + (10/2)²

g² = 169

g = 13 cm

Com isso, a área da superfície lateral será aproximadamente:

A = 3,14 × 5 × 13 = 204,1 cm²

Multiplicando esse valor por 50, temos a área total a ser forrada:

A = 50 × 204,1 = 10205 cm²

Agora, vamos calcular a área de cada tecido retangular:

A = 67 × 50 = 3350 cm²

Dividindo uma área pela outra, vamos determinar quantos pedaços de tecido serão necessários para cobrir os chapéus:

10205 / 3350 = 3,05 ≅ 3

Arredondando, podemos dizer que são necessários 3 pedaços de tecido.

respondido por: analauraguibarroso
8

Resposta:

Os cálculos da resposta acima está correta , contudo o resultado será 4 , pois com apenas  3 cortes os chapéus ainda não estariam completamente forrados, ou seja , será 4 e sobrará um pouco de tecido.

Explicação passo a passo:

Acredito que houve um deslize ao interpretar a questão, porém os cálculos estão todos corretos.

Perguntas similares