9. Em geometria, paralelismo é uma noção que indica se dois objetos (retas ou planos) estão na mesma direção. Ao trabalhar com a noção de Espaço Vetorial, duas retas são paralelas e existe um plano que as contém, e se essas retas não se tocam. Assim sendo, elas estão na mesma direção, mesmo que estejam em sentidos opostos. Para vetores, o princípio é basicamente o mesmo. Sendo assim, analise as sentenças a seguir:
I- Os vetores (2,-1,4) e (6,-3,12) são paralelos.
II- Os vetores (1,-2,4) e (2,-2,5) são paralelos.
III- Os vetores (3,1,2) e (6,-2,1) são paralelos.
IV- Os vetores (1,-1,2) e (2,-2,4) são paralelos.
Agora, assinale a alternativa CORRETA:
a) Somente a sentença I está correta.
b) As sentenças II e III estão corretas.
c) As sentenças I e IV estão corretas.
d) As sentenças I e III estão corretas.
Respostas
respondido por:
17
Considere que u e v são vetores.
Os vetores u e v serão paralelos se u = a.v, ou seja, quando ambos são Linearmente Dependentes.
Sendo assim, vamos analisar cada afirmativa:
I) Perceba que (6,-3,12) = 3(2,-1,4).
Portanto, os vetores (6,-3,12) e (2,-1,4) são paralelos.
A afirmativa está correta.
II) Perceba que não existem um a tal que (1,-2,4) = a(2,-2,5).
Portanto, os vetores (1,-2,4) e (2,-2,5) não são paralelos.
A afirmativa está errada.
III) Da mesma forma, não existem um escalar tal que (3,1,2) = a(6,-2,1).
Portanto, os vetores (3,1,2) e (6,-2,1) não são paralelos.
A afirmativa está errada.
IV) Veja que: (2,-2,4) = 2(1,-1,2).
Portanto, os vetores (1,-1,2) e (2,-2,4) são paralelos.
A afirmativa está correta.
A alternativa correta é a letra c).
zelonlaufer:
Perfeito
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás