• Matéria: Matemática
  • Autor: aatroxx
  • Perguntado 7 anos atrás

(Olímpiada de matemática) Prove que qualquer reta que passa pelo ponto I de interseção das diagonais de um paralelogramo intersecta os lados opostos em dois pontos M e N tais que IM = IN

Respostas

respondido por: Anônimo
2

Comentário inicial: Veja a resolução escrita que foi anexada.

Seja #ABCD paralelogramo qualquer. Como I é o ponto de interseção das diagonais do paralelogramo temos que este é ponto médio das mesmas portanto temos que:

AI = IC, IMA = INC (alternos internos) e NIC = AIM (opv).

Dessa forma ΔAMI ≡ ΔCNI (caso de congruência LAAº)

Daí, segue que IN = IM

Espero ter ajudado! Caso tenha dúvidas quanto a resolução fique a vontade para usar os comentários


Anexos:

aatroxx: Muito bom, pode responder outra? pfv
Anônimo: Posso sim
Perguntas similares