Respostas
PA ( 30, 25, 20,...)
Primeiro termo: a1 = 30
Razão: r = 25 - 30 = -5
Sétimo termo : a7 = ?
Fórmula da PA
an = a1 + (n -1)r
a7 = 30 + (7 - 1) (-5)
a7 = 30 + 6(-5)
a7 = 30 - 30
a7 =0
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (30, 25, 20,...), tem-se que:
a)cada elemento nela presente, exceto o primeiro, será o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 5 unidades negativas (por exemplo, 25=30+(-5) e 20=25+(-5)). Se um comportamento deste tipo acontece (soma de um mesmo valor para formar os termos seguintes), tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).
b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 30
d)sétimo termo (a₇): ?
e)número de termos (n): 7
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 7ª), equivalente ao número de termos.
f)Embora não se saiba o valor do sétimo termo, pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será negativa (afinal, os valores dos termos decrescem, aproximando-se do zero, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante negativo, a razão, a um termo qualquer) e o termo solicitado não será menor que zero, haja vista que do terceiro termo até o zero há vinte unidades e, se se pensar que até o sétimo termo há quatro termos e que serão somadas vinte unidades negativas, não será suficiente para ingressar no campo dos números negativos.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 25 - 30 ⇒
r = -5 (Razão negativa, conforme prenunciado no item f acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o sétimo termo:
an = a₁ + (n - 1) . r ⇒
a₇ = a₁ + (n - 1) . (r) ⇒
a₇ = 30 + (7 - 1) . (-5) ⇒
a₇ = 30 + (6) . (-5) ⇒ (Veja a Observação 2.)
a₇ = 30 - 30 ⇒
a₇ = 0
Observação 2: Na parte destacada, foi aplicada a regra de sinais da multiplicação: dois sinais diferentes, +x- ou -x+, resultam em sinal de negativo (-).
RESPOSTA: O sétimo termo da P.A. (30, 25, 20, ...) é 0.
====================================================
VERIFICAÇÃO DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₇ = 0 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o sétimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₇ = a₁ + (n - 1) . (r) ⇒
0 = a₁ + (7 - 1) . (-5) ⇒
0 = a₁ + (6) . (-5) ⇒
0 = a₁ - 30 ⇒
30 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 30 (Provado que a₇ = 0.)
→Veja outras tarefas relacionadas à determinação de termos em sequências do tipo progressão aritmética e resolvidas por mim:
brainly.com.br/tarefa/30860188
brainly.com.br/tarefa/30805634
brainly.com.br/tarefa/12963811
brainly.com.br/tarefa/29994834
brainly.com.br/tarefa/29841264