• Matéria: Física
  • Autor: camilamatiaspe6wjb
  • Perguntado 7 anos atrás

Olá, alguém poderia me ajudar com a resolução comentada?

A peça abaixo (anexo) é puxada pela força F (vetor) de intensidade F = 100N e que faz um ângulo α de 37º com a horizontal conforme a ilustração.

a) Esquematize as forças atuantes na peça
b) Qual a força normal e a força de atrito?

Respostas informadas para b) N = 140 N e Fat = 80 N.

Anexos:

Respostas

respondido por: rodrigopiracuruca
1

Para resolve essa questão primeiro salientamos que mesmo que o bloco esteja sendo puxado, ele não está se movendo ou seja, a força resultante do bloco é zero. Você pode se perguntar como é zero se tem tantas forças atuando sobre ele ? pois bem basta lembrar que quando você  empurra uma arvore grade ela não se move mesmo assim você está aplicando uma força de grande intensidade.

Assim estamos trabalhando com uma força de atrito estática. Agora olhando para as forças que atuam sobre a peça (figura lá embaixo, desculpe pelo desenho mal feito das forças ) vemos que existe a força \vec F que eu decompus em  F_{y} e F_{x} onde

F_{x}= \| \vec F \| \cos \theta\\\\F_{y}= \| \vec F \| \sin \theta

onde \| \vec F \| significa o módulo do vetor  \vec F e \theta o ângulo que o vetor  \vec F faz com a horizontal.

As outras forças são \vec F_{fat} que é a força de atrito estático, que é oposta ao sentido que o objeto tende a se mover, F_{n} força normal e por ultimo a força peso \vec P=m\vec g. Sabendo todas as força que atua em um corpo vamos aplicar a segunda lei de Newton

\vec F_{r}=\sum \vec F=m\vec a

onde temos que a força resultante que atua em um corpo é igual a somatória de todas as força que atua neste corpo, e que é proporcional a massa do corpo e a aceleração.

Vamos somar as forças que atuam só no eixo y depois só no eixo x para que melhore o entendimento.

Aplicando a 2º Lei de Newton no eixo y temos que

\vec F_{n}+\vec F_{y}-\vec P=\vec F_{r}

substituindo os temos e tomando apenas os módulos das forças temos

F_{n}+\| \vec F\| \sin \theta -mg=ma

como a aceleração do bloco é zero pois ele não está subindo e nem se deslocando temos que

F_{n}+\| \vec F\| \sin \theta -mg=0 isolando a força normal temos

F_{n}=mg-\| \vec F\| \sin \theta

sabendo que

\| \vec F\|=100 \, N\\\\\theta=37^{\circ}\\\\m=20\, kg\\\\g=10\, m/s^{2}

Ficamos com

F_{n}=mg-\| \vec F\| \sin \theta\\\\F_{n}=20 \times 10-100 \times \sin (37)\\\\F_{n}=200-100 \times 0,6\\\\F_{n}=200-60\\\\F_{n}=140 \, N

Portanto  a força normal é F_{n}=140 \, N


Aplicando a 2º Lei de Newton no eixo x temos que

\vec F_{x}-\vec F_{fat}=\vec F_{r}\\\\\| \vec F\| \cos \theta-\vec F_{fat}=m\vec a

isolando a força de atrito e usando o módulos das grandezas temos

F_{fat}=\| \vec F\| \cos \theta-ma

como a aceleração do bloco é zero pois ele não está  se deslocando, e substituindo os valores das variáveis temos que  

F_{fat}=100 \cos (37)-m \times 0\\\\F_{fat}=100 \times 0,79\\\\F_{fat}=79,86 \simeq 80 \, N

Portanto a força normal é 140 newtons e a força de atrito estático é 80 newtons.

O interessante além fazer e acerta a questão, é saber o que ela nos quer  ensina. Neste caso é que mesmo um corpo tendo várias forças atuando sobre ele, o que importa é a força resultante, ou seja a somatória de todas as forças que atuam sobre o corpo. Além de que vimos que essa força resultante  neste corpo é zero, por tanto temos um atrito estático que está se opondo ao movimento.

Desculpe se fui extenso de mais.


Anexos:

camilamatiaspe6wjb: Obrigada! Resolução melhor, impossível :)
Perguntas similares