um jardim de forma retangular tem 96 metros quadrados de área se aumentarmos o comprimento desse Jardim em 3 metros de largura em 2 m a área do Jardim passa a ter 150 metros quadrados calcule as dimensões originais do jardim
Respostas
As dimensões originais do jardim são: 8 X 12.
Chegamos a esse valor por meio de uma resolução lógica:
Se o "Terreno" é um retangulo, a sua fórmula para a área é base x altura.
Logo, vemos que para se obter o valor de 150m² temos que multiplicar:
10 X 15.
Como na questão está exposto, é aumentado do original, o valor de 2 metros de um lado e 3 metros do outro, então subtraímos:
10 - 2 = 8
15 - 3 = 12
Então obtemos o valor original do jardim.
8 x 12 = 96m²
Obs.: Essa questão deveria estar na matéria de Matemática ;)
Para encontrarmos a área de um retângulo , usamos a seguinte fórmula:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A = C.L ( C = Comprimento e L = Largura )
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A questão nos fala que a área inicial é 96cm² e que a área com o aumento é de 150 cm² , com isso montaremos nossa equação linear.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C.L=96
(C+3).(L+2)=150
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C=96/L
CL+2C+3L+6 = 150
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como (CL) = 96 , vamos substituir na fórmula:
96+2C+3L+6=150
2C+3L = 150-96-6
2C+3L = 48
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Substituindo o valor do C nesta fórmula temos:
2(96/L) +3L = 48
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
MMC = L
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
2.96+3L² = 48L
192+3L²=48L
3L²-48L+192=0
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Temos uma equação quadrática:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
a = 3
b = - 48
c= 192
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Fórmula:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
S { 8 }
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Substituindo o valor do L na equação do cumprimento temos :
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
96/L = C
96/8 = C
12 = C
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como o comprimento é 12 , vamos substituir na fórmula da área para achar a largura.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
C.L=96
12.L = 96
L = 96/12
L = 8
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Logo as dimensões originais são 8 de largura e 12 de comprimento.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃