• Matéria: Matemática
  • Autor: thammillysantos49
  • Perguntado 7 anos atrás

Sabendo-se que x+1/x = 3√2/2, então x²+(1/x)² é igual a:

a)3/2
b)5/2
c)3
d)7/2
e)9/2

Respostas

respondido por: Lukyo
4

É dado que

    \mathsf{x+\dfrac{1}{x}=\dfrac{3\sqrt{2}}{2}}


Eleve os dois lados ao quadrado:

    \Big(\mathsf{x+\dfrac{1}{x}\Big)^{\!2}=\Big(\dfrac{3\sqrt{2}}{2}\Big)^{\!2}}\\\\\\\\\Big(\mathsf{x+\dfrac{1}{x}\Big)^{\!2}=\dfrac{(3\sqrt{2})^2}{2^2}}\\\\\\\\\Big(\mathsf{x+\dfrac{1}{x}\Big)^{\!2}=\dfrac{9\cdot 2}{2^2}}\\\\\\\Big(\mathsf{x+\dfrac{1}{x}\Big)^{\!2}=\dfrac{9}{2}}


Expanda o quadrado da soma no lado esquerdo:

    \mathsf{x^2+2\cdot \diagup\!\!\!\! x\cdot \dfrac{1}{\diagup\!\!\!\! x}+\Big(\dfrac{1}{x}\Big)^{\!2}=\dfrac{9}{2}}\\\\\\\mathsf{x^2+2+\dfrac{1}{x^2}=\dfrac{9}{2}}\\\\\\\mathsf{x^2+\dfrac{1}{x^2}=\dfrac{9}{2}-2}\\\\\\\mathsf{x^2+\dfrac{1}{x^2}=\dfrac{9}{2}-\dfrac{4}{2}}


    \mathsf{x^2+\dfrac{1}{x^2}=\dfrac{5}{2}\quad\longleftarrow\quad resposta:~alternativa~b).}


Bons estudos! :-)


Perguntas similares